Математическим выражением закона кулона является формула. Кулоновская сила является силой притяжения, если знаки зарядов разные и силой отталкивания, если знаки зарядов одинаковые
В электростатике одним из основополагающих является закон Кулона. Он применяется в физике для определения силы взаимодействия двух неподвижных точечных зарядов или расстояния между ними. Это фундаментальный закон природы, который не зависит ни от каких других законов. Тогда форма реального тела не влияет на величину сил. В этой статье мы расскажем простым языком закон Кулона и его применение на практике.
История открытия
Ш.О. Кулон в 1785 г. впервые экспериментально доказал взаимодействия описанные законом. В своих опытах он использовал специальные крутильные весы. Однако еще в 1773 г. было доказано Кавендишем, на примере сферического конденсатора, что внутри сферы отсутствует электрическое поле. Это говорило о том, что электростатические силы изменяются в зависимости от расстояния между телами. Если быть точнее — квадрату расстояния. Тогда его исследования не были опубликованы. Исторически сложилось так, что это открытие было названо в честь Кулона, аналогичное название носит и величина, в которой измеряется заряд.
Формулировка
Определение закона Кулона гласит: В вакууме F взаимодействия двух заряженных тел прямо пропорционально произведению их модулей и обратно пропорционально квадрату расстояния между ними.
Звучит кратко, но может быть не всем понятно. Простыми словами: Чем больший заряд имеют тела и чем ближе они находятся друг к другу, тем больше сила.
И наоборот: Если увеличить расстояние межу зарядами — сила станет меньше.
Формула правила Кулона выглядит так:
Обозначение букв: q — величина заряда, r — расстояние межу ними, k — коэффициент, зависит от выбранной системы единиц.
Величина заряда q может быть условно-положительной или условно-отрицательной. Это деление весьма условно. При соприкосновении тел она может передаваться от одного к другому. Отсюда следует, что одно и то же тело может иметь разный по величине и знаку заряд. Точечным называется такой заряд или тело, размеры которого много меньше, чем расстояние возможного взаимодействия.
Стоит учитывать что среда, в которой расположены заряды, влияет на F взаимодействия. Так как в воздухе и в вакууме она почти равна, открытие Кулона применимо только для этих сред, это одно из условий применения этого вида формулы. Как уже было сказано, в системе СИ единица измерения заряда — Кулон, сокращено Кл. Она характеризует количество электричества в единицу времени. Является производной от основных единиц СИ.
1 Кл = 1 А*1 с
Стоит отметить, что размерность 1 Кл избыточна. Из-за того что носители отталкиваются друг от друга их сложно удержать в небольшом теле, хотя сам по себе ток в 1А небольшой, если он протекает в проводнике. Например в той же лампе накаливания на 100 Вт течет ток в 0,5 А, а в электрообогревателе и больше 10 А. Такая сила (1 Кл) примерно равна действующей на тело массой 1 т со стороны земного шара.
Вы могли заметить, что формула практически такая же, как и в гравитационном взаимодействии, только если в ньютоновской механике фигурируют массы, то в электростатике — заряды.
Формула Кулона для диэлектрической среды
Коэффициент с учетом величин системы СИ определяется в Н 2 *м 2 /Кл 2 . Он равен:
Во многих учебниках этот коэффициент можно встретить в виде дроби:
Здесь Е 0 = 8,85*10-12 Кл2/Н*м2 — это электрическая постоянная. Для диэлектрика добавляется E — диэлектрическая проницаемость среды, тогда закон Кулона может применяться для расчетов сил взаимодействия зарядов для вакуума и среды.
С учетом влияния диэлектрика имеет вид:
Отсюда мы видим, что введение диэлектрика между телами снижает силу F.
Как направлены силы
Заряды взаимодействуют друг с другом в зависимости от их полярности — одинаковые отталкиваются, а разноименные (противоположные) притягиваются.
Кстати это главное отличие от подобного закона гравитационного взаимодействия, где тела всегда притягиваются. Силы направлены вдоль линии, проведенной между ними, называют радиус-вектором. В физике обозначают как r 12 и как радиус-вектор от первого ко второму заряду и наоборот. Силы направлены от центра заряда к противоположному заряду вдоль этой линии, если заряды противоположны, и в обратную сторону, если они одноименные (два положительных или два отрицательных). В векторном виде:
Сила, приложенная к первому заряду со стороны второго обозначается как F 12. Тогда в векторной форме закон Кулона выглядит следующим образом:
Для определения силы приложенной ко второму заряду используются обозначения F 21 и R 21 .
Если тело имеет сложную форму и оно достаточно большое, что при заданном расстоянии не может считаться точечным, тогда его разбивают на маленькие участки и считают каждый участок как точечный заряд. После геометрического сложения всех получившихся векторов получают результирующую силу. Атомы и молекулы взаимодействуют друг с другом по этому же закону.
Применение на практике
Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования. Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле. Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода. Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.
В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.
Полезное
§ 2. Взаимодействие зарядов. Закон Кулона
Электрические заряды взаимодействуют между собой, т. е. одноименные заряды взаимно отталкиваются, а разноименные притягиваются. Силы взаимодействия электрических зарядов определяются законом Кулона
и направлены по прямой линии, соединяющей точки, в которых сосредоточены заряды.
Согласно закону Кулона, сила взаимодействия двух точечных электрических зарядов прямо пропорциональна произведению количеств электричества в этих зарядах, обратно пропорциональна квадрату расстояния между ними и зависит от среды, в которой находятся заряды:
где F
- сила взаимодействия зарядов, н
(ньютон);
Один ньютон содержит ≈ 102 г
силы.
q
1 , q
2 - количество электричества каждого заряда, к
(кулон);
Один кулон содержит 6,3 · 10 18 зарядов электрона.
r
- расстояние между зарядами, м
;
ε а - абсолютная диэлектрическая проницаемость среды (материала); эта величина характеризует электрические свойства той среды, в которой находятся взаимодействующие заряды. В Международной системе единиц (СИ) ε а измеряется в (ф/м
). Абсолютная диэлектрическая проницаемость среды
где ε 0 - электрическая постоянная, равная абсолютной диэлектрической проницаемости вакуума (пустоты). Она равна 8,86 · 10 -12 ф/м
.
Величина ε, показывающая, во сколько раз в данной среде электрические заряды взаимодействуют между собой слабее, чем в вакууме (табл. 1), называется диэлектрической проницаемостью
.
Величина ε есть отношение абсолютной диэлектрической проницаемости данного материала к диэлектрической проницаемости вакуума:
Для вакуума ε = 1. Диэлектрическая проницаемость воздуха практически близка к единице.
Таблица 1
Диэлектрическая проницаемость некоторых материалов
На основании закона Кулона можно сделать вывод, что большие электрические заряды взаимодействуют сильнее, чем малые. С увеличением расстояния между зарядами сила их взаимодействия значительно слабее. Так, с увеличением расстояния между зарядами в 6 раз уменьшается сила их взаимодействия в 36 раз. При сокращении расстояния между зарядами в 9 раз увеличивается сила их взаимодействия в 81 раз. Взаимодействие зарядов также зависит от материала, находящегося между зарядами.
Пример.
Между электрическими зарядами Q
1 = 2 · 10 -6 к
и Q
2 = 4,43 · 10 -6 к
, расположенными на расстоянии 0,5 м
, помещена слюда (ε = 6). Вычислить силу взаимодействия указанных зарядов.
Решение
. Подставляя в формулу значения известных величин, получим:
Если в вакууме электрические заряды взаимодействуют с силой F в, то, поместив между этими зарядами, например, фарфор, их взаимодействие можно ослабить в 6,5 раз, т. е. в ε раз. Это значит, что сила взаимодействия между зарядами может быть определена как отношение
Пример.
Одноименные электрические заряды взаимодействуют в вакууме с силой F
в = 0,25 н
. С какой силой будут отталкиваться два заряда, если пространство между ними заполнено бакелитом? Диэлектрическая проницаемость этого материала равна 5.
Решение
. Сила взаимодействия электрических зарядов
Так как один ньютон ≈ 102 г силы, то 0,05 н составляет 5,1 г .
Силы электростатического взаимодействия зависят от формы и размеров наэлектризованных тел, а также от характера распределения заряда на этих телах. В некоторых случаях можно пренебречь формой и размерами заряженных тел и считать, что каждый заряд сосредоточен в одной точке. Точечный заряд – это электрический заряд , когда размер тела, на котором этот заряд сосредоточен, намного меньше расстояния между заряженными телами. Приближённо точечные заряды можно получить на опыте, заряжая, например, достаточно маленькие шарики.
Взаимодействие двух покоящихся точечных зарядов определяет основной закон электростатики – закон Кулона . Этот закон экспериментально установил в 1785 году французский физик Шарль Огюстен Кулон (1736 – 1806). Формулировка закона Кулона следующая:
Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональная произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.
Эта сила взаимодействия называется кулоновская сила , и формула закона Кулона будет следующая:
F = k · (|q 1 | · |q 2 |) / r 2
Где |q1|, |q2| – модули зарядов, r – расстояния между зарядами, k – коэффициент пропорциональности.
Коэффициент k в СИ принято записывать в форме:
K = 1 / (4πε 0 ε)
Где ε 0 = 8,85 * 10 -12 Кл/Н*м 2 – электрическая постоянная, ε – диэлектрическая проницаемость среды.
Для вакуума ε = 1, k = 9 * 10 9 Н*м/Кл 2 .
Сила взаимодействия неподвижных точечных зарядов в вакууме:
F = · [(|q 1 | · |q 2 |) / r 2 ]
Если два точечных заряда помещены в диэлектрик и расстояние от этих зарядов до границ диэлектрика значительно больше расстояния между зарядами, то сила взаимодействия между ними равна:
F = · [(|q 1 | · |q 2 |) / r 2 ] = k · (1 /π) · [(|q 1 | · |q 2 |) / r 2 ]
Диэлектрическая проницаемость среды всегда больше единицы (π > 1), поэтому сила, с которой взаимодействуют заряды в диэлектрике, меньше силы взаимодействия их на том же расстоянии в вакууме.
Силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела (рис. 1.8).
Рис. 1.8. Силы взаимодействия двух неподвижных точечных заряженных тел.
Кулоновские силы, как и гравитационные силы, подчиняются третьему закону Ньютона:
F 1,2 = -F 2,1
Кулоновская сила является центральной силой. Как показывает опыт , одноимённые заряженные тела отталкиваются, разноимённо заряженные тела притягиваются.
Вектор силы F 2,1 , действующей со стороны второго заряда на первый, направлен в сторону второго заряда, если заряды разных знаков, и в противоположную, если заряды одного знака (рис. 1.9).
Рис. 1.9. Взаимодействие разноименных и одноименных электрических зарядов.
Электростатические силы отталкивания принято считать положительными, силы притяжения – отрицательными. Знаки сил взаимодействия соответствуют закону Кулона: произведение одноимённых зарядов является положительным числом, и сила отталкивания имеет положительный знак. Произведение разноимённых зарядов является отрицательным числом, что соответствует знаку силы притяжения.
В опытах Кулона измерялись силы взаимодействия заряженных шаров, для чего применялись крутильные весы (рис. 1.10). На тонкой серебряной нити подвешена лёгкая стеклянная палочка с , на одном конце которой закреплён металлический шарик а , а на другом противовес d . Верхний конец нити закреплён на вращающейся головке прибора е , угол поворота которой можно точно отсчитывать. Внутри прибора имеется такого же размера металлический шарик b , неподвижно закреплённый на крышке весов. Все части прибора помещены в стеклянный цилиндр, на поверхности которого нанесена шкала, позволяющая определить расстояние между шариками a и b при различных их положениях.
Рис. 1.10. Опыт Кулона (крутильные весы).
При сообщении шарикам одноимённых зарядов они отталкиваются друг от друга. При этом упругую нить закручивают на некоторый угол, чтобы удержать шарики на фиксированном расстоянии. По углу закручивания нити и определяют силу взаимодействия шариков в зависимости от расстояния между ними. Зависимость силы взаимодействия от величины зарядов можно установить так: сообщить каждому из шариков некоторый заряд, установить их на определённом расстоянии и измерить угол закручивания нити. Затем надо коснуться одного из шариков таким же по величине заряженным шариком, изменяя при этом его заряд, так как при соприкосновении равных по величине тел заряд распределяется между ними поровну. Для сохранения между шариками прежнего расстояния необходимо изменить угол закручивания нити, а следовательно, и определить новое значение силы взаимодействия при новом заряде.
В результате долгих наблюдений учеными было установлено, что разноименно заряженные тела притягиваются, а одноименно заряженные наоборот – отталкиваются. Это значит, что между телами возникают силы взаимодействия. Французский физик Ш. Кулон опытным путем исследовал закономерности взаимодействия металлических шаров и установил, что сила взаимодействия между двумя точечными электрическими зарядами будет прямопропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния между ними:
Где k – коэффициент пропорциональности, зависящий от выбора единиц измерений физических величин, которые входят в формулу, а также и от среды, в которой находятся электрические заряды q 1 и q 2 . r – расстояние между ними.
Отсюда можем сделать вывод, что закон Кулона будет справедлив только точечных зарядов, то есть для таких тел, размерами которых вполне можно пренебречь по сравнению с расстояниями между ними.
В векторной форме закон Кулона будет иметь вид:
Где q 1 и q 2 заряды, а r – радиус-вектор их соединяющий; r = |r|.
Силы, которые действуют на заряды, называют центральными. Они направлены по прямой, соединяющей эти заряды, причем сила, действующая со стороны заряда q 2 на заряд q 1 , равна силе, действующей со стороны заряда q 1 на заряд q 2 , и противоположна ей по знаку.
Для измерения электрических величин могут использоваться две системы счисления – система СИ (основная) и иногда могут использовать систему СГС.
В системе СИ одной из главных электрических величин является единица силы тока – ампер (А), то единица электрического заряда будет ее производной (выражается через единицу силы тока). Единицей определения заряда в СИ является кулон. 1 кулон (Кл) – это количество «электричества», проходящего через поперечное сечение проводника за 1 с при токе в 1 А , то есть 1 Кл = 1 А·с.
Коэффициент k в формуле 1а) в СИ принимается равным:
И закон Кулона можно будет записать в так называемой «рационализированной» форме:
Многие уравнения, описывающие магнитные и электрические явления, содержат множитель 4π. Однако, если данный множитель ввести в знаменатель закона Кулона, то он исчезнет из большинства формул магнетизма и электричества, которые очень часто применяют в практических расчетах. Такую форму записи уравнения называют рационализированной.
Величина ε 0 в данной формуле – электрическая постоянная.
Основными единицами системы СГС являются механические единицы СГС (грамм, секунда, сантиметр). Новые основные единицы дополнительно к вышеперечисленным трем в системе СГС не вводятся. Коэффициент k в формуле (1) принимается равным единице и безразмерным. Соответственно закон Кулона в не рационализированной форме будет иметь вид:
В системе СГС силу измеряют в динах: 1 дин = 1 г·см/с 2 , а расстояние в сантиметрах. Предположим, что q = q 1 = q 2 , тогда из формулы (4) получим:
Если r = 1см, а F = 1 дин, то из этой формулы следует, что в системе СГС за единицу заряда принимают точечный заряд, который (в вакууме) действует на равный ему заряд, удаленный от него на расстояние 1 см, с силой в 1 дин. Такая единица заряда называется абсолютной электростатической единицей количества электричества (заряда) и обозначается СГС q . Ее размерность:
Для вычисления величины ε 0 , сравним выражения для закона Кулона, записанные в системе СИ и СГС. Два точечных заряда по 1 Кл каждый, которые находятся на расстоянии 1 м друг от друга, будут взаимодействовать с силой (согласно формуле 3):
В СГС данная сила будет равна:
Сила взаимодействия между двумя заряженными частицами зависит от среды, в которой они находятся. Чтобы характеризовать электрические свойства различных, сред было введено понятие относительной диэлектрической проницательности ε.
Значение ε это различная величина для разных веществ – для сегнетоэлектриков ее значение лежит в пределах 200 – 100 000, для кристаллических веществ от 4 до 3000, для стекла от 3 до 20, для полярных жидкостей от 3 до 81, для неполярных жидкостей от 1,8 до 2,3; для газов от 1,0002 до 1,006.
Также от температуры окружающей среды зависит и диэлектрическая проницаемость (относительная).
Если учесть диэлектрическую проницаемость среды, в которую помещены заряды, в СИ закон Кулона примет вид:
Диэлектрическая проницаемость ε – величина безразмерная и она не зависит от выбора единиц измерения и для вакуума считается равной ε = 1. Тогда для вакуума закон Кулона примет вид:
Поделив выражение (6) на (5) получим:
Соответственно относительная диэлектрическая проницаемость ε показывает, во сколько раз сила взаимодействия между точечными зарядами в какой-то среде, которые находятся на расстоянии r друг относительно друга меньше, чем в вакууме, при том же расстоянии.
Для раздела электричества и магнетизма систему СГС иногда называют системой Гаусса. До появления системы СГС действовали системы СГСЭ (СГС электрическая) для измерения электрических величин и СГСМ (СГС магнитная) для измерения магнитных величин. В первой равной единице принималась электрическая постоянная ε 0 , а второй магнитная постоянная μ 0 .
В системе СГС формулы электростатики совпадают соответствующими формулами СГСЭ, а формулы магнетизма, при условии, что они содержат только магнитные величины – с соответствующими формулами в СГСМ.
Но если в уравнении одновременно будет содержаться и магнитные, и электрические величины, то данное уравнение, записанное в системе Гаусса, будет отличаться от этого же уравнения, но записанного в системе СГСМ или СГСЭ множителем 1/с или 1/с 2 . Величина с равна скорости света (с = 3·10 10 см/с) называется электродинамической постоянной.
Закон Кулона в системе СГС будет иметь вид:
Пример
На двух абсолютно идентичных каплях масла недостает по одному электрону. Силу ньютоновского притяжения уравновешивает сила кулоновского отталкивания. Нужно определить радиусы капель, если расстояния между ними значительно превышает их линейные размеры.
Решение
Поскольку расстояние между каплями r значительно больше их линейных размеров, то капли можно принять за точечные заряды, и тогда сила кулоновского отталкивания будет равна:
Где е – положительный заряд капли масла, равный заряду электрона.
Силу ньютоновского притяжения можно выразить формулой:
Где m – масса капли, а γ – гравитационная постоянная. Согласно условию задачи F к = F н, поэтому:
Масса капли выражена через произведение плотности ρ на объем V, то есть m = ρV, а объем капли радиуса R равен V = (4/3)πR 3 , откуда получаем:
В данной формуле постоянные π, ε 0 , γ известны; ε = 1; также известен и заряд электрона е = 1,6·10 -19 Кл и плотность масла ρ = 780 кг/м 3 (справочные данные). Подставив числовые значения в формулу получим результат: R = 0,363·10 -7 м.
Публикации по материалам Д. Джанколи. "Физика в двух томах" 1984 г. Том 2.
Между электрическими зарядами действует сила. Как она зависит от величины зарядов и других факторов?
Этот вопрос исследовал в 1780-е годы французский физик Шарль Кулон (1736-1806). Он воспользовался
крутильными весами, очень похожими на те, которые применял Кавендиш для определения гравитационной постоянной.
Если к шарику на конце стержня, подвешенного на нити, подности заряд, стержень слегка отклоняется, нить закручивается,
и угол поворота нити будет пропорционален действующей между зарядами силе (крутильные весы).
С помощью этого прибора Кулон определил зависимость силы от величины зарядов и расстояния между ними.
В те времена еще не было приборов для точного определения величины заряда, но
Кулон сумел приготовить небольшие шарики с известным соотношением зарядов.
Если заряженный проводящий шарик, рассуждал он, привести в соприкосновение с точно таким же незаряженным шариком,
то имевшийся на первом заряд в силу симметрии распределится поровну между двумя шариками.
Это дало ему возможность получать заряды, составлявшие 1/2, 1/4 и т.д. от первоначального.
Несмотря на некоторые трудности, связанные с индуцированием зарядов, Кулону удалось доказать, что сила,
с которой одно заряженное тело действует на другое малое заряженное тело, прямо пропорциональна электрическому заряду каждого из них.
Другими словами, если заряд любого из этих тел удвоить, то удвоится и сила;
если же удвоить одновременно заряды обоих тел, то сила станет вчетверо больше. Это справедливо при условии, что расстояние
между телами остается постоянным.
Изменяя расстояние между телами, Кулон обнаружил, что действующая между ними сила обратно пропорциональна квадрату
расстояния: если расстояние, скажем, удваивается, сила становится вчетверо меньше.
Итак, заключил Кулон, сила, с которой одно малое заряженное тело (в идеальном случае -точечный заряд, т.е. тело, подобно материальной точке не имеющее пространственных размеров) действует на другое заряженное тело, пропорциональна произведению их зарядов Q 1 и Q 2 и обратно пропорциональна квадрату расстояния между ними:
Здесь k
-коэффициент пропорциональности.
Это соотношение известно как закон Кулона; его справедливость подтверждена тщательными экспериментами,
гораздо более точными, чем первоначальные трудно воспроизводимые опыты Кулона.
Показатель степени 2 установлен в настоящее время с точностью 10 -16 , т.е. он равен
2 ± 2×10 -16 .
Коль скоро мы теперь имеем дело с новой величиной - электрическим зарядом, мы можем подобрать такую единицу измерения,
чтобы постоянная к в формуле равнялась единице.
И действительно, такая система единиц еще недавно широко использовалась в физике.
Речь идет о системе СГС (сантиметр-грамм-секунда), в которой используется электростатическая единица заряда СГСЭ. По определению два малых тела, каждое с зарядом 1 СГСЭ, расположенные на расстоянии 1 см друг от друга, взаимодействуют с силой 1 дина.
Теперь, однако, заряд чаще всего выражают в системе СИ, где его единицей является кулон (Кл).
Точное определение кулона через электрический ток и магнитное поле мы приведем позднее.
В системе СИ постоянная k
имеет величину k
= 8,988×10 9 Нм 2 /Кл 2 .
Заряды, возникающие при электризации трением обычных предметов (расчески, пластмассовой линейки и т.п.),
по порядку величины составляют микрокулон и меньше (1 мкКл = 10 -6 Кл).
Заряд электрона (отрицательный) приблизительно равен 1,602×10 -19 Кл.
Это наименьший известный заряд; он имеет фундаментальное значение и обозначается символом е
, его часто называют элементарным зарядом.
е
= (1,6021892 ± 0,0000046)×10 -19 Кл, или е
≈ 1,602×10 -19 Кл.
Поскольку тело не может приобрести или потерять долю электрона, суммарный заряд тела должен быть целым кратным элементарного заряда. Говорят, что заряд квантуется (т.е. может принимать лишь дискретные значения). Однако, поскольку заряд электрона е очень мал, мы обычно не замечаем дискретности макроскопических зарядов (заряду 1 мкКл соответствуют примерно 10 13 электронов) и считаем заряд непрерывным.
Формула Кулона характеризует силу, с которой один заряд действует на другой. Эта сила направлена вдоль линии, соединяющей заряды.
Если знаки зарядов одинаковы, то силы, действующие на заряды, направлены в противоположные стороны.
Если же знаки зарядов различны, то действующие на заряды силы направлены навстречу друг другу.
Заметим, что в соответствии с третьим законом Ньютона сила, с которой один заряд действует на другой,
равна по величине и противоположна по направлению силе, с которой второй заряд действует на первый.
Закон Кулона можно записать в векторной форме подобно закону всемирного тяготения Ньютона:
где F
12 - вектор силы, действующей на заряд Q
1 со стороны заряда Q
2,
- расстояние между зарядами,
- единичный вектор, направленный от Q
2 к Q
1.
Следует иметь в виду, что формула применима лишь к телам, расстояние между которыми значительно больше их собственных размеров.
В идеальном случае это точечные заряды. Для тел конечного размера не всегда ясно, как отсчитывать расстояние r
между ними, тем
более что распределение заряда может быть и неоднородным.
Если оба тела - сферы с равномерным распределением заряда, то r
означает расстояние между центрами сфер.
Важно также понимать, что формула определяет силу, действующую на данный заряд со стороны единственного заряда.
Если система включает несколько (или много) заряженных тел, то результирующая сила, действующая на данный заряд,
будет равнодействующей (векторной суммой) сил, действующих со стороны остальных зарядов.
Постоянная к в формуле Закона Кулона обычно выражается через другую константу, ε 0
, так называемую
электрическую постоянную, которая связана с k
соотношением k =
1/(4πε 0)
.
С учетом этого закон Кулона можно переписать в следующем виде:
где с наивысшей на сегодня точностью
или округленно
Запись большинства других уравнений электромагнитной теории упрощается при использовании ε 0 , поскольку 4π в окончательном результате часто сокращается. Поэтому мы будем обычно использовать Закон Кулона, считая, что:
Закон Кулона описывает силу, действующую между двумя покоящимися зарядами. Когда заряды движутся, между ними возникают дополнительные силы, и их мы обсудим в последующих главах. Здесь же рассматриваются только покоящиеся заряды; этот раздел учения об электричестве называется электростатикой .
Продолжение следует. Коротко о следующей публикации:
Электрическое поле - один из двух компонентов электромагнитного поля, представляющий собой векторное поле, существующее вокруг тел или частиц, обладающих электрическим зарядом, либо возникающий при изменении магнитного поля.
Замечания и предложения принимаются и приветствуются!