Среды солей. Гидролиз солей
Исследуем действие универсального индикатора на растворы некоторых солей
Как мы видим, среда первого раствора — нейтральная (рН=7), второго — кислая (рН < 7), третьего щелочная (рН > 7). Чем же объяснить столь интересный факт? 🙂
Для начала, давайте вспомним, что такое pH и от чего он зависит.
pH- водородный показатель, мера концентрации ионов водорода в растворе (по первым буквам латинских слов potentia hydrogeni - сила водорода).
pH вычисляется как отрицательный десятичный логарифм концентрации водородных ионов, выраженной в молях на один литр:
В чистой воде при 25 °C концентрации ионов водорода и гидроксид-ионов одинаковы и составляют 10 -7 моль/л (рН=7).
Когда концентрации обоих видов ионов в растворе одинаковы, раствор имеет нейтральную реакцию. Когда > раствор является кислым, а при > - щелочным.
За счет чего же в некоторых водных растворах солей происходит нарушение равенства концентраций ионов водорода и гидроксид-ионов?
Дело в том, что происходит смещение равновесия диссоциации воды вследствие связывания одного из ее ионов ( или ) с ионами соли с образованием малодиссоциированного, труднорастворимого или летучего продукта. Это и есть суть гидролиза.
— это химическое взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита -кислоты (или кислой соли), или основания (или основной соли).
Слово «гидролиз» означает разложение водой («гидро»-вода, «лизис» — разложение).
В зависимости от того какой ион соли вступает во взаимодействие с водой, различают три типа гидролиза:
- гидролиз по катиону (в реакцию с водой вступает только катион);
- гидролиз по аниону (в реакцию с водой вступает только анион);
- совместный гидролиз — гидролиз по катиону и по аниону (в реакцию с водой вступает и катион, и анион).
Любую соль можно рассматривать как продукт, образованный взаимодействием основания и кислоты:
Гидролиз соли – взаимодействие ее ионов с водой, приводящее к появлению кислотной или щелочной среды, но не сопровождающееся образованием осадка или газа.
Процесс гидролиза протекает только с участием растворимых
солей и состоит из двух этапов:
1) диссоциация
соли в растворе – необратимая
реакция (степень диссоциации, или 100%);
2) собственно , т.е. взаимодействие ионов соли с водой, — обратимая
реакция (степень гидролиза ˂ 1, или 100%)
Уравнения 1-го и 2-го этапов – первый из них необратим, второй обратим – складывать нельзя!
Отметим, что соли, образованные катионами щелочей
и анионами сильных
кислот, гидролизу не подвергаются, они лишь диссоциируют при растворении в воде. В растворах солей KCl, NaNO 3 , NaSO 4 и BaI среда нейтральная
.
Гидролиз по аниону
В случае взаимодействия анионов
растворенной соли с водой процесс называется гидролизом соли по аниону
.
1) KNO 2 = K + + NO 2 — (диссоциация)
2) NO 2 — + H 2 O ↔ HNO 2 + OH — (гидролиз)
Диссоциация соли KNO 2 протекает полностью, гидролиз аниона NO 2 – в очень малой степени (для 0,1 М раствора – на 0,0014%), но этого оказывается достаточно, чтобы раствор стал щелочным
(среди продуктов гидролиза присутствует ион OH —), в нем p
H = 8,14.
Гидролизу подвергаются анионы только слабых
кислот (в данном примере – нитрит-ион NO 2 , отвечающий слабой азотистой кислоте HNO 2). Анион слабой кислоты притягивает к себе катион водорода, имеющийся в воде, и образует молекулу этой кислоты, а гидроксид-ион остается свободным:
NO 2 — + H 2 O (H +, OH —) ↔ HNO 2 + OH —
Примеры:
а) NaClO = Na + + ClO —
ClO — + H 2 O ↔ HClO + OH —
б) LiCN = Li + + CN —
CN — + H 2 O ↔ HCN + OH —
в) Na 2 CO 3 = 2Na + + CO 3 2-
CO 3 2- + H 2 O ↔ HCO 3 — + OH —
г) K 3 PO 4 = 3K + + PO 4 3-
PO 4 3- + H 2 O ↔ HPO 4 2- + OH —
д) BaS = Ba 2+ + S 2-
S 2- + H 2 O ↔ HS — + OH —
Обратите внимание, что в примерах (в- д) нельзя увеличить число молекул воды и вместо гидроанионов (HCO 3, HPO 4, HS) писать формулы соответствующих кислот (H 2 CO 3, H 3 PO 4, H 2 S). Гидролиз – обратимая реакция, и протекать «до конца» (до образования кислоты) он не может.
Если бы такая неустойчивая кислота, как H 2 CO 3 , образовывалась в растворе своей соли NaCO 3 , то наблюдалось бы выделение из раствора газа CO 2 (H 2 CO 3 = CO 2 + H 2 O). Однако, при растворении соды в воде образуется прозрачный раствор без газовыделения, что является свидетельством неполноты протекания гидролиза аниона с появлением в растворе только гидранионов угольной кислоты HCO 3 — .
Степень гидролиза соли по аниону зависит от степени диссоциации продукта гидролиза – кислоты. Чем слабее кислота, тем выше степень гидролиза.
Например, ионы CO 3 2- , PO 4 3- и S 2- подвергаются гидролизу в большей степени, чем ион NO 2 , так как диссоциация H 2 CO 3 и H 2 S по 2-й ступени, а H 3 PO 4 по 3-тей ступени протекает значительно меньше, чем диссоциация кислоты HNO 2 . Поэтому растворы, например, Na 2 CO 3 , K 3 PO 4 и BaS будут сильнощелочными
(в чем легко убедиться по мылкости соды на ощупь).
Избыток ионов ОН в растворе легко обнаружить индикатором или измерить специальными приборами (рН-метрами).
Если в концентрированный раствор сильно гидролизующейся по аниону соли,
например Na 2 CO 3 , внести алюминий, то последний (вследствие амфотерности) прореагирует со щелочью и будет наблюдаться выделение водорода. Это – дополнительное доказательство протекания гидролиза, ведь в раствор соды мы не добавляли щелочь NaOH!
Обратите особое внимание на соли кислот средней силы — ортофосфорной и сернистой. По первой ступени эти кислоты диссоциируют довольно хорошо, поэтому их кислые соли гидролизу не подвергаются, и среда раствора таких солей — кислая (из-за наличия катиона водорода в составе соли). А средние соли гидролизуются по аниону — среда щелочная. Итак, гидросульфиты, гидрофосфаты и дигидрофосфаты — не гидролизуются по аниону, среда кислая. Сульфиты и фосфаты — гидролизуются по аниону, среда щелочная.
Гидролиз по катиону
В случае взаимодействия катиона растворенной соли с водой процесс называется
гидролизом соли по катиону
1) Ni(NO 3) 2 = Ni 2+ + 2NO 3 − (диссоциация)
2) Ni 2+ + H 2 O ↔ NiOH + + H + (гидролиз)
Диссоциация соли Ni(NO 3) 2 протекает нацело, гидролиз катиона Ni 2+ − в очень малой степени (для 0,1М раствора − на 0,001%), но этого оказывается достаточно, чтобы среда стала кислотной (среди продуктов гидролиза присутствует ион H +).
Гидролизу подвергаются катионы только малорастворимых основных и амфотерных гидроксидов и катион аммония NH 4 + . Катион металла отщепляет от молекулы воды гидроксид-ион и освобождает катион водорода H + .
Катион аммония в результате гидролиза образует слабое основание − гидрат аммиака и катион водорода:
NH 4 + + H 2 O ↔ NH 3 · H 2 O + H +
Обратите внимание, что нельзя увеличивать число молекул воды и вместо гидроксокатионов (например, NiOH +) писать формулы гидроксидов (например, Ni(OH) 2). Если бы гидроксиды образовались, то из растворов солей выпали бы осадки, чего не наблюдается (эти соли образуют прозрачные растворы).
Избыток катионов водорода легко обнаружить индикатором или измерить специальными приборами. В концентрированный раствор сильно гидролизующейся по катиону соли, вносится магний или цинк, то последние реагируют с кислотой с выделением водорода.
Если соль нерастворимая — то гидролиза нет, т.к ионы не взаимодействуют с водой.
Реакция раствора веществ в растворителе может быть трех видов: нейтральная, кислая и щелочная. Реакция зависит от концентрации водородных ионов H + в растворе.
Чистая вода диссоциирует в очень незначительной степени на ионы H + и ионы гидрооксила OH - .
Водородный показатель pH
Водородный показатель является удобным и общепринятым способом выражения концентрации водородных ионов. Для чистой воды концентрация Н + равна концентрации ОН - , а произведение концентраций H + и ОН - , выраженных в грамм-йонах на литр, -величина постоянная, равная 1.10 -14
Из этого произведения можно вычислить концентрацию водородных ионов: =√1.10 -14 =10 -7 /г-ион/л/.
Это равновесное /"нейтральное"/ состояние принято обозначать рН 7/p - отрицательный логарифм концентрации, Н - водородных ионов, 7 - показатель степени с обратным знаком/.
Раствор с рН больше 7 является щелочным, в нем ионов Н + меньше, чем ОН - ; раствор с рН меньше 7 - кислый, в нем ионов Н + больше, чем ОН - .
Жидкости, применяемые на практике, имеют концентрацию водородных ионов, изменяющуюся обычно в пределах рН от 0 до 1
Индикаторы
Индикаторы - это вещества, изменяющие свой цвет в зависимости от концентрации водородных ионов в растворе. При помощи индикаторов определяют реакцию среды. Наиболее известные индикаторы - бромбензол, бромтимол, фенолфталеин, метилоранж и др. Каждый из индикаторов действует в определенных пределах показаний pH. Например, бромтимол меняет желтый цвет при рН 6,2 на синий при рН 7,6; индикатор нейтральный красный -с красного при рН 6,8 на желтый при рН 8; бромбензол - с желтого яри рН 4,0 на синий при рН 5,6; фенолфталеин - с бесцветного при рН 8,2 на пурпурный при рН 10,0 и т.д.
Ни один из индикаторов не работает на протяжении всей шкалы pH от 0 до 14. Однако в реставрационной практике не приходится определять высокие концентрации кислот или щелочей. Чаще всего встречаются отклонения на 1 - 1,5 единицы pH от нейтрального в ту и другую стороны.
Для определения реакции среды в реставрационной практике применяется смесь различных индикаторов, подобранная таким образом, что отмечает малейшие отклонения от нейтральности. Такая смесь называема "универсальным индикатором".
Универсальный индикатор - прозрачная жидкость оранжевого цвета. При небольшом изменении среды в сторону щелочности раствор индикатора приобретает зеленоватый оттенок, при увеличении щелочности - голубой. Чем больше щелочность испытуемой жидкости, тем более интенсивным становится синий цвет.
При небольшом изменении среды в сторону кислотности раствор универсального индикатора становится розовым, при увеличении кислотности - красным /карминного или краплачного оттенка/.
Изменения реакции среды на картинах происходит в результате поражения их плесенью; часто встречаются изменения на участках, где наклеены ярлыки щелочным клеем /казеиновым, конторским и пр./.
Для проведения анализа нужно иметь, кроме универсального индикатора, дистиллированную воду, чистую фильтровальную бумагу белого цвета и стеклянную палочку.
Ход анализа
На фильтровальную бумагу наносят каплю дистиллированной воды и дают впитаться. Рядом с этой каплей наносят вторую и прикладывают ее к испытуемому участку. Для лучшего контакта бумагу со второй каплей сверху притирают стеклянной полочкой. Затем на фильтровальную бумагу в районы капель воды наносят по капле универсального индикатора. Первая капля воды служит контролем, с цветом которого сравнивается капля, пропитанная раствором с испытуемого участка. Расхождение в цвете с контрольной каплей указывает на изменение - отклонение среды то нейтральной.
НЕЙТРАЛИЗАЦИЯ ЩЕЛОЧНОЙ СРЕДЫ
Обрабатываемый участок увлажняют 2%-ным водным раствором уксусной или лимонной кислоты. Для этого на пинцет наматывают небольшое количество ваты, смачивают ее в растворе кислоты, отжимают и прикладывают к указанному участку.
Реакцию обязательно проверяют универсальным индикатором!
Процесс продолжают до полной нейтрализации всего участка.
Через неделю проверку среды следует повторить.
НЕЙТРАЛИЗАЦИЯ КИСЛОЙ СРЕДЫ
Обрабатываемый участок увлажняют 2%-ным водным раствором гидрата окиси аммония /нашатырным спиртом/. Методика проведения нейтрализации та же, что и в случае щелочной среды.
Проверку среды следует повторить через неделю.
ПРЕДОСТЕРЕЖЕНИЕ: Процесс нейтрализации требует большой осторожности, так как излишняя обработка может привести к перакислению или перещелочению обрабатываемого участка. Кроме того, вода в растворах может вызвать усадку холста.
Для того, чтобы понять, что такое гидролиз солей, вспомним для начала, как диссоциируют кислоты и щелочи.
Общим между всеми кислотами является то, что при их диссоциации обязательно образуются катионы водорода (Н +), при диссоциации же всех щелочей всегда образуются гидроксид-ионы (ОН −).
В связи с этим, если в растворе, по тем или иным причинам, больше ионов Н + говорят, что раствор имеет кислую реакцию среды, если ОН − — щелочную реакцию среды.
Если с кислотами и щелочами все понятно, то какая же реакция среды будет в растворах солей?
На первый взгляд, она всегда должна быть нейтральной. И правда же, откуда, например, в растворе сульфида натрия взяться избытку катионов водорода или гидроксид-ионов. Сам сульфид натрия при диссоциации не образует ионов ни одного, ни другого типа:
Na 2 S = 2Na + + S 2-
Тем не менее, если бы перед вами оказались, к примеру, водные растворы сульфида натрия, хлорида натрия, нитрата цинка и электронный pH-метр (цифровой прибор для определения кислотности среды) вы бы обнаружили необычное явление. Прибор показал бы вам, что рН раствора сульфида натрия больше 7, т.е. в нем явный избыток гидроксид-ионов. Среда раствора хлорида натрия оказалась бы нейтральной (pH = 7), а раствора Zn(NO 3) 2 кислой.
Единственное, что соответствует нашим ожиданиям – это среда раствора хлорида натрия. Она оказалась нейтральной, как и предполагалось.
Но откуда же взялся избыток гидроксид-ионов в растворе сульфида натрия, и катионов-водорода в растворе нитрата цинка?
Попробуем разобраться. Для этого нам нужно усвоить следующие теоретические моменты.
Любую соль можно представить как продукт взаимодействия кислоты и основания. Кислоты и основания делятся на сильные и слабые. Напомним, что сильными называют те кислоты, и основания, степень диссоциации, которых близка к 100%.
примечание: сернистую (H 2 SO 3) и фосфорную (H 3 PO 4) чаще относят к кислотам средней силы, но при рассмотрении заданий по гидролизу нужно относить их к слабым.
Кислотные остатки слабых кислот, способны обратимо взаимодействовать с молекулами воды, отрывая от них катионы водорода H + . Например, сульфид-ион, являясь кислотным остатком слабой сероводородной кислоты, взаимодействует с ней следующим образом:
S 2- + H 2 O ↔ HS − + OH −
HS − + H 2 O ↔ H 2 S + OH −
Как можно видеть, в результате такого взаимодействия образуется избыток гидроксид-ионов, отвечающий за щелочную реакцию среды. То есть кислотные остатки слабых кислот увеличивают щелочность среды. В случае растворов солей содержащих такие кислотные остатки говорят, что для них наблюдается гидролиз по аниону .
Кислотные остатки сильных кислот, в отличие от слабых, с водой не взаимодействуют. То есть они не оказывают влияния на pH водного раствора. Например, хлорид-ион, являясь кислотным остатком сильной соляной кислоты, с водой не реагирует:
То есть, хлорид-ионы, не влияют на pН раствора.
Из катионов металлов, так же с водой способны взаимодействовать только те, которым соответствуют слабые основания. Например, катион Zn 2+ , которому соответствует слабое основание гидроксид цинка. В водных растворах солей цинка протекают процессы:
Zn 2+ + H 2 O ↔ Zn(OH) + + H +
Zn(OH) + + H 2 O ↔ Zn(OH) + + H +
Как можно видеть из уравнений выше, в результате взаимодействия катионов цинка с водой, в растворе накапливаются катионы водорода, повышающие кислотность среды, то есть понижающие pH. Если в состав соли, входят катионы, которым соответствуют слабые основания, в этом случае говорят что соль гидролизуется по катиону .
Катионы металлов, которым соответствуют сильные основания, с водой не взаимодействуют. Например, катиону Na + соответствует сильное основание – гидроксид натрия. Поэтому ионы натрия с водой не реагируют и никак не влияют на pH раствора.
Таким образом, исходя из вышесказанного соли можно разделить на 4 типа, а именно, образованные:
1) сильным основанием и сильной кислотой,
Такие соли не содержат ни кислотных остатков, ни катионов металлов, взаимодействующих с водой, т.е. способных повлиять на pH водного раствора. Растворы таких солей имеют нейтральную реакцию среды. Про такие соли говорят, что они не подвергаются гидролизу .
Примеры: Ba(NO 3) 2 , KCl, Li 2 SO 4 и т.д.
2) сильным основанием и слабой кислотой
В растворах таких солей, с водой реагируют только кислотные остатки. Среда водных растворов таких солей щелочная, в отношении солей такого типа говорят, что они гидролизуются по аниону
Примеры: NaF, K 2 CO 3 , Li 2 S и т.д.
3) слабым основанием и сильной кислотой
У таких солей с водой реагируют катионы, а кислотные остатки не реагируют – гидролиз соли по катиону , среда кислая.
Примеры: Zn(NO 3) 2 , Fe 2 (SO 4) 3 , CuSO 4 и т.д.
4) слабым основанием и слабой кислотой.
С водой реагируют как катионы, так и анионы кислотных остатков. Гидролиз солей такого рода идет и по катиону, и по аниону или же. Также говорят про такие соли, что они подвергаются необратимому гидролизу .
Что же значит то, что они необратимо гидролизуются?
Поскольку в данном случае с водой реагируют и катионы металла (или NH 4 +) и анионы кислотного остатка, в раcтворе одновременно возникают и ионы H + , и ионы OH − , которые образуют крайне малодиссоциирующее вещество – воду (H 2 O).
Это, в свою очередь, приводит к тому, что соли образованные кислотными остатками слабых оснований и слабых кислот не могут быть получены обменными реакциями, а только твердофазным синтезом, либо и вовсе не могут быть получены. Например, при смешении раствора нитрата алюминия с раствором сульфида натрия, вместо ожидаемой реакции:
2Al(NO 3) 3 + 3Na 2 S = Al 2 S 3 + 6NaNO 3 (− так реакция не протекает!)
Наблюдается следующая реакция:
2Al(NO 3) 3 + 3Na 2 S + 6H 2 O= 2Al(OH) 3 ↓+ 3H 2 S + 6NaNO 3
Тем не менее, сульфид алюминия без проблем может быть получен сплавлением порошка алюминия с серой:
2Al + 3S = Al 2 S 3
При внесении сульфида алюминия в воду, он также как и при попытке его получения в водном растворе, подвергается необратимому гидролизу.
Al 2 S 3 + 6H 2 O = 2Al(OH) 3 ↓ + 3H 2 S
Методическая разработка урока
«Среда водных растворов»
Цель: формирование исследовательской компетенции обучающихся при изучении среды водных растворов электролитов и методов ее качественного анализа.
Задачи:
- Сформировать представление обучающихся о типах среды водных растворов (кислая, нейтральна, щелочная);
- Рассмотреть понятие «индикаторы» и основные виды индикаторов (лакмус, фенолфталеин, метиловый оранжевый);
- Изучить изменение окраски индикаторов в разных средах;
- Выявить в ходе химического эксперимента наиболее оптимальный индикатор для определения кислой и щелочной среды раствора;
- Проанализировать зависимость между средой раствора и значением водородного показателя;
- Сформировать навыки работы обучающихся с универсальным индикатором;
- Выявить зависимость окраски соков некоторых растений (в частности капусты краснокочанной) от среды раствора.
Форма: урок – исследование. Данная форма позволяет моделировать все этапы химического исследования при изучении конкретной темы.
На данном уроке гармонично сочетаются проблемный метод и химический эксперимент, служащий средством доказательства или опровержения выдвинутых гипотез.
Ведущая форма деятельности на уроке – самостоятельная работа обучающихся в парах или группах, выполняющих одинаковые или разные задания (по вариантам), направленные на получение более широкого круга информации всем классом.
Методические комментарии записаны курсивом.
Оргмомент. I этап - мотивационный
Добрый день! Мир, окружающий нас, полон разнообразных по строению и свойствам веществ. Познание их позволит нам познать самих себя.
Самым оптимальным и емким способом познания является исследование. Сегодня я предлагаю нам представить себя не учениками и учителем, а сотрудниками серьезной лаборатории, маститыми учеными-исследователями химии.(Игровые технологии) Слайд №1
Для начала позвольте мне задать Вам вопрос, который был адресован мне одним из моих коллег: «Что общего между древним Карфагеном и современной Голландией?» (проблемное обучение) (Обсуждение вариантов ответа)
На самом деле общими являются экологические проблемы, характерные и для одного, и для другого государства.
Историческая справка: В свое время Карфаген был очень мощным государством, которое отстаивало свое господство на Средиземноморье. В результате третьей Пунической войны полумиллионный город Карфаген был полностью уничтожен, а оставшиеся в живых жители проданы в рабство. Римляне скандировали: «Carthago delendam esse!» («Карфаген должен быть уничтожен!»). Слайд №2
Место, где располагался город, было засыпано солью. Современную Голландию никто солью не засыпает, но это государство активно борется с мировыми экологическими проблемами, в том числе вызываемыми наводнения. (межпредметные связи)
Проблемный вопрос:
Как вы думаете, в Егорьевске имеются экологические проблемы? Какие?
(Засорение почвы, загрязнение водоемов, атмосферы, много мусора на улицах и т.д.)
Одна из важнейших проблем – проблема чистоты воды . Вода поступает в водопровод с насосных станций, поднимающих её с большой глубины, из артезианских скважин. А ведь когда-то источником воды в селе Высоком (на месте которого возник Егорьевск) была река Гуслица.Слайд №3
Рассмотрим современный образец воды из реки Гуслица. Оцените цвет, прозрачность, запах, наличие взвешенных частиц.
Все эти методы анализа относятся к органолептическим. Объясните название понятия . (Т.е. осуществляются с помощью органов чувств человека).
Вопрос для размышления :Основываясь только на результатах органолептических методов, можно сделать вывод об экологической чистоте образцов воды?
(Нельзя. В воде могут содержаться частицы, которые мы не видим – внешне незаметные).
Мы подошли к проблеме : Как определить наличие невидимых частиц в растворе? (проблемное обучение)
II этап - Решение проблемы
Цель нашего сегодняшнего исследования: изучить некоторые способы качественного анализа водных растворов (т.е. содержания в них разных частиц). Какими способами можно воспользоваться?
(Можно проводить химические реакции – качественные реакции , доказывающие наличие в растворе тех или иных частиц.)
А можно воспользоваться специальными веществами – индикаторами .
Вопрос для размышления: Вы знакомы с индикаторами из курса биологии, физики и других учебных дисциплин. Как Вы думаете, какое значение в химии имеет термин «индикатор»?
Фиксация определения на слайде:Слайд № 4
Индикатор – это вещество, изменяющее свой цвет в зависимости от среды раствора.
Вопрос для размышления: Все ли Вам понятно в данном определении?
(Что такое «среда раствора»? Какая она бывает?) Это тема нашего сегодняшнего урока, запишите ее в тетради:
« Среда водных растворов ».
Выявить типы сред водных растворов Вам поможет великая наука – логика!... и знание классов неорганических соединений.
Предлагаю построить первую логическую цепочку, ответив на соответствующие вопросы:
- К какому классу относятся вещества с формулами: HCl, H 2 SO 4 , HNO 3 , H 2 S? (кислоты)Слайд №5
- Какие катионы образуются в растворе при диссоциации данного класса соединений? (катионы водорода)
Записать на доске уравнение диссоциации азотной кислоты
HNO 3 → H + + NO 3 -
Подсказка: Название среды раствора в данном случае происходит от названия соответствующего класса соединений (кислая среда ).
- Постройте следующую логическую цепочку для соединений, выраженных формулами: NaOH, Ca(OH) 2 , KOH, Ba(OH) 2 . (основания, щёлочи) Слайд №6
Записать на доске уравнение полной диссоциации гидроксида бария
Ba(OH) 2 → Ba 2+ + 2OH -
Подсказка: Вспомните классификацию оснований! Все ли основания в водном растворе распадаются на ионы? Название среды происходит от названия растворимых оснований. (щелочная)
- К какому классу относятся следующие вещества: сульфат калия, хлорид бария, нитрат кальция? (соли). Слайд №7 K 2 SO 4 , BaCl 2 , Ca(NO 3) 2
- При растворении в воде данных соединений образуются частицы, характеризующие кислотный или щелочной характер раствора? (не образуются)
Составить на доске уравнение диссоциации сульфата калия
K 2 SO 4 → 2K + + SO 4 2-
Подсказка: Название среды происходит от отсутствия катионов водорода и анионов гидроксо-групп. (нейтральная)
Составим схему классификации сред Схема на доске (педагогика сотрудничества)
СРЕДА ВОДНЫХ РАСТВОРОВ
_______________ ________________
___________________
(физкультминутка для глаз)
Итак, мы выяснили, что существуют три типа среды водных растворов (кислая, нейтральная и щелочная).
Измерить уровень кислотности водной среды нам помогут индикаторы, о которых мы уже говорили вначале урока.
Индикаторы – это вещества, изменяющие свой цвет в зависимости от среды раствора.
Индикаторы бывают разные. Сегодня мы с Вами познакомимся с тремя основными: синий лакмус, метиловый оранжевый и фенолфталеин .
Каждый из них по-разному изменяет окраску в зависимости от среды раствора, поэтому наша с Вами задача – подобрать наиболее оптимальный индикатор для каждой среды раствора.
Для работы сделаем таблицу:Слайд №9
Метилоранж |
Фенолфталеин |
||
Раствор кислоты |
|||
Раствор щёлочи |
|||
Раствор соли |
В три пробирки налейте по 2-3 мл раствора соляной кислоты. В каждую из них добавьте по 1 капле индикаторов (в пробирку № 1 – метиловый оранжевый, в пробирку № 2 - фенолфталеин, в пробирку № 3 – синий лакмус).
Зафиксируйте наблюдаемые изменения в тетради.
Задание: Отметьте название индикатора, который наиболее удобно использовать для определения кислой среды водного раствора!
В три пробирки налейте по 2-3 мл раствора гидроксида натрия. В каждую из них добавьте по 1 капле индикаторов (в пробирку № 1 – метиловый оранжевый, в пробирку № 2 - фенолфталеин, в пробирку № 3 – синий лакмус).
Пронаблюдайте за изменением окраски. Зафиксируйте наблюдаемые изменения в тетради
Задание: Отметьте название индикатора, который наиболее удобно использовать для определения щелочной среды водного раствора!
Обсуждение результатов эксперимента. Заполнение таблицы в тетради (обучающиеся) и на слайде (учителем). (педагогика сотрудничества)
Формулирование выводов: В кислой среде окраска метилового оранжевого становится красной, лакмуса – красной, фенолфталеин не изменяет своей окраски. Следовательно, наиболее оптимальный индикатор для определения кислой среды раствора – метиловый оранжевый .
В щелочной среде окраска метилового оранжевого становится желтой, лакмуса – синей, фенолфталеина – малиновой. Следовательно, наиболее оптимальный индикатор для определения щелочной среды - фенолфталеин.
Вы вооружились новыми знаниями. Можете вы теперь изучить среду образца воды?
Попробуйте определить средуобразца воды, используя оптимальные индикаторы, только для этого отлейте изхимического стаканчика небольшое количество исследуемой воды в три чистые пробирки и добавьте в каждую соответствующий индикатор (фенолфталеин, метиловый оранжевый).
Наблюдаете ли Вы значительные изменения окраски индикаторов в растворах? (Нет).
Какие гипотезы Вы можете выдвинуть?
- Среда раствора не сильно кислая, или не сильно щелочная, поэтому индикаторы не могут уловить разницу.
- Среда нейтральная, поэтому окраска индикаторов не изменяется.
Действительно, диапазон характеристики среды раствора очень широк: от сильнокислой до сильнощелочной.
Он выражается в единицах от 0 до 14, которые называются значением рН (пэ-аш) – водородным показателем .(опережающее обучение)
Водородный показатель – величина, характеризующая содержание катионов водорода в растворе. Есть точные универсальные индикаторы. Слайд №10
Опережающее обучение. С научной точки зрения рН – это отрицательный десятичный логарифм концентрации ионов водорода в растворе. Пока здесь для Вас очень много непонятных слов, но в 11 классе мы вернемся к изучению этой величины и будем рассматривать ее более подробно с позиции тех знаний, которые Вы к тому времени будете иметь.
Задание в тетради :
Используя полученные сведения, выявите взаимосвязь меду значением рН и средой раствора. Выводы оформите в тетради.
Выводы:
При рН > 7 среда раствора щелочная
При рН = 7 среда раствора нейтральная
При рН < 7 среда раствора кислая
Для определения значения рН и более точного определения среды раствора существуют разные методы: кислотно-основное титрование, измерением электродвижущей силы (ЭДС), а можно с помощью универсальной индикаторной бумаги.
В образец воды в химическом стаканчике опустите универсальную индикаторную бумагу.
Сравните полученную на ней окраску с цветной шкалой рН.
Вопрос для размышления : Какова среда раствора выданного Вам образца?
Обязательно стоит уточнить тип среды по силе (слабо-, сильно-).
Проблемный вопрос :Ну а теперь Вы можете сделать вывод об экологическом состоянии выданного вам образца воды?
(Нет. Потому что мы не знаем экологических норм, не знаем, с чем сравнить наши образцы).
Сравнить уровень кислотности выданных образцов Вы можете с условной шкалой значений рН некоторых растворов.
На слайде составляется шкала значений рН Слайд №11
Проблемные вопросы :
- Как Вы думаете, какие жидкости не рекомендуется употреблять людям с язвенной болезнью желудка? Почему?
(Все слабо- и сильно кислые растворы (кофе, лимонный, яблочный, томатный сок, Кока-кола) могут вызвать обострение язвенной болезни из-за излишней кислотности).
- Что общего, на Ваш взгляд, между нашатырным спиртом, который хозяйки добавляют в воду для мытья стекол, и мылом, которым мы с Вами моем руки?
(И раствор мыла, и нашатырный спирт имеют щелочную среду, которая способствует удалению грязи). Слайд №12
Проблемный вопрос :Иногда нам бывает необходимо определить среду раствора в домашних условиях. А под руками нет универсальной индикаторной бумаги. Что делать? (проблемное обучение)
Информация: Оказывается, некоторые овощи и фрукты обладают индикаторной способностью. Они содержат в себе рН-чувствительный пигмент (антоцианин).
Это плоды темно-синего, фиолетового цвета: свекла, ежевика, черная смородина, вишня, темный виноград и, в том числе краснокочанная капуста.
Информация : В домашних условиях Вы можете изготовить индикаторные бумажки.
Возьмите сок краснокочанной капусты и пропитайте им листки фильтровальной бумаги. Листкам надо дать высохнуть. После этого разрежьте фильтровальную бумагу на тонкие полоски. Индикаторные бумажки готовы! Успешных Вам экспериментов! (гуманно-личностное)
III этап. Заключительный этап исследования :
Мы с Вами подходим к концу нашего исследования. Ранее вы сказали, что для того, чтобы сделать вывод о соответствии норме кислотности образцов воды мы должны владеть полезной информацией о санитарно-гигиенических нормах, действующих в мире и в нашей стране.
Полезная информация :В соответствии с Гигиеническими требованиями к качеству воды централизованных систем питьевого водоснабжения (СанПиН 2.1.4.559-96) питьевая вода должна быть безвредна по химическому составу и иметь благоприятные органолептические свойства.
Водородный показатель для питьевой воды должен соответствовать норме 6-9 единиц, для водоемов 6,5 – 8,5.Исследователи установили, что особенно губительным для водных обитателей является кислая среда, нежели щелочная. У водных растений повышение кислотности воды, в первую очередь, сказывается на нарушении кальциевого обмена и образовании оболочек клеток, их делении, а также на протекании реакции фотосинтеза.
Для водных объектов и питьевой воды содержание нитратов не должно превышать 45 мг/л, фосфатов – 3,5 мг/л. Нитрат- и фосфат – ионы способствуют зарастанию водоемов растительностью, вызывая разрастание планктона. Тот, в свою очередь, отмирает и поглощает большое количество кислорода, лишая воду способности к самоочищению. Нитраты могут оказать токсическое действие на людей и водных обитателей.
Повышенное содержание железа в воде вызывает отложение железа в печени и по вредности значительно обгоняет алкоголизм. Предельно-допустимая концентрация в воде железа составляет 0,3 мг/л. (здоровьесберегающие технологии)
III. Рефлексия Вопросы для обсуждения :
- Соответствует ли норме значения рН исследуемой воды?
- В каких препаратах раствор имеет кислую среду?
- В каких препаратах среда раствора щелочная?
- Как изменяют окраску индикаторы в подобной среде?
Ключевой вопрос :
Как Вы полагаете, полученных на данный момент сведений о качестве образцов воды достаточно, чтобы сделать окончательный вывод о ее экологической пригодности и чистоте?(Не достаточно. Нужно провести полный качественный анализ на содержание в ней разных частиц – ионов).
Вывод: нужно долго и кропотливо изучать предмет, чтобы делать полные и правильные выводы из исследований.
Д.З. параграф 28, упр. №2,3 стр. 46
Химическим путем рН раствора можно определить при помощи кислотно-основных индикаторов.
Кислотно-основные индикаторы – органические вещества, окраска которых зависит от кислотности среды.
Наиболее распространенными индикаторами являются лакмус, метиловый оранжевый, фенолфталеин. Лакмус в кислой среде окрашивается в красный цвет, в щелочной – в синий. Фенолфталеин в кислой среде - бесцветный, в щелочной окрашивается в малиновый цвет. Метиловый оранжевый в кислой среде окрашивается в красный цвет, а в щелочной – в желтый.
В лабораторной практике часто смешивают ряд индикаторов, подобранных таким образом, чтобы цвет смеси изменялся в широких пределах значений рН. С их помощью можно определить рН раствора с точностью до единицы. Эти смеси называют универсальными индикаторами .
Имеются специальные приборы – рН–метры, с помощью которых можно определить рН растворов в диапазоне от 0 до 14 с точностью до 0,01 единицы рН.
Гидролиз солей
При растворении некоторых солей в воде нарушается равновесие процесса диссоциации воды и, соответственно, изменяется рН среды. Это объясняется тем, что соли реагируют с водой.
Гидролиз солей – химическое обменное взаимодействие ионов растворенной соли с водой, приводящее к образованию слабодиссоциирующих продуктов (молекул слабых кислот или оснований, анионов кислых солей или катионов основных солей) и сопровождающееся изменением рН среды.
Рассмотрим процесс гидролиза в зависимости от природы оснований и кислот, образующих соль.
Соли, образованные сильными кислотами и сильными основаниями (NaCl, kno3, Na2so4 и др.).
Допустим , что при взаимодействии хлорида натрия с водой происходит реакция гидролиза с образованием кислоты и основания:
NaCl + H 2 O ↔ NaOH + HCl
Для правильного представления о характере этого взаимодействия запишем уравнение реакции в ионном виде, учитывая, что единственным слабодиссоциирующим соединением в этой системе является вода:
Na + + Cl - + HOH ↔ Na + + OH - + H + + Cl -
При сокращении одинаковых ионов в левой и правой частях уравнения остается уравнение диссоциации воды:
Н 2 О ↔ Н + + ОН -
Как видно, в растворе нет избыточных ионов Н + или ОН - по сравнению с их содержанием в воде. Кроме того, никаких других слабодиссоциирующих или труднорастворимых соединений не образуется. Отсюда делаем вывод, что соли, образованные сильными кислотами и основаниями гидролизу не подвергаются, а реакция растворов этих солей такая же, как и в воде, нейтральная (рН=7).
При составлении ионно–молекулярных уравнений реакций гидролиза необходимо:
1) записать уравнение диссоциации соли;
2) определить природу катиона и аниона (найти катион слабого основания или анион слабой кислоты);
3) записать ионно-молекулярное уравнение реакции, учитывая, что вода - слабый электролит- и что сумма зарядов должна быть одинаковой в обеих частях уравнения.
Соли, образованные слабой кислотой и сильным основанием
(Na 2 CO 3 , K 2 S, CH 3 COONa и др .)
Рассмотрим реакцию гидролиза ацетата натрия. Эта соль в растворе распадается на ионы: CH 3 COONa ↔ CH 3 COO - + Na + ;
Na + -катион сильного основания, CH 3 COO - - анион слабой кислоты.
Катионы Na + не могут связывать ионы воды, так как NaОН – сильное основание - полностью распадается на ионы. Анионы слабой уксусной кислоты CH 3 COO - связывают ионы водорода с образованием малодиссоциированной уксусной кислоты:
CH 3 COO - + НОН ↔ CH 3 COOН + ОН -
Видно, что в результате гидролиза CH 3 COONa в растворе образовался избыток гидроксид-ионов, и реакция среды стала щелочной (рН > 7).
Таким образом можно сделать вывод, что соли, образованные слабой кислотой и сильным основанием гидролизуются по аниону ( An n - ). При этом анионы соли связывают ионы Н + , а в растворе накапливаются ионы ОН - , что обуславливает щелочную среду (рН>7):
An n - + HOH ↔ Han (n -1)- + OH - , (при n=1 образуется HAn – слабая кислота).
Гидролиз солей, образованных двух- и трехосновными слабыми кислотами и сильными основаниями, протекает ступенчато
Рассмотрим гидролиз сульфида калия. К 2 S диссоциирует в растворе:
К 2 S ↔ 2К + + S 2- ;
К + - катион сильного основания, S 2 - анион слабой кислоты.
Катионы калия не принимают участия в реакции гидролиза, взаимодействуют с водой только анионы слабой сероводородной кислоты. В данной реакции по первой ступени происходит образование слабодиссоциирующих ионов HS - , по второй ступени – образование слабой кислоты H 2 S:
1-я ступень: S 2- + HOH ↔ HS - + OH - ;
2-я ступень: HS - + HOH ↔ H 2 S + OH - .
Образующиеся по первой ступени гидролиза ионы ОН - значительно снижают вероятность гидролиза по следующей ступени. В результате практическое значение обычно имеет процесс, идущий только по первой ступени, которым, как правило, и ограничиваются при оценке гидролиза солей в обычных условиях.