Технология покраски порошковыми красками при какой температуре. Что такое полимерная окраска
Позволяет протекать процессу полимеризации более рационально, не нарушая качества декоративного слоя краски, который еще очень чувствителен к внешним воздействиям. Согласно законам кинетики, реакция полимеризации проходит при определенной температуре и времени, также данный процесс напрямую зависит от состава композиции порошковой краски . В камере горячей сушки быстро и равномерно нагревается весь слой покрытия до определенной температуры, в данных условиях порошковый слой, расплавляясь, достигает минимальной вязкости, в результате чего начинается плавный процесс полимеризации.
Обычно температура в камере для сушки может варьироваться от 110 до 250 градусов, а время выдержки - от 5 до 30 минут. Особенное влияние на процесс отверждения имеют толщина рабочей поверхности и ее форма. Постоянная температура в камере и контроль ее во время всего процесса обеспечивают надежное равномерное покрытие с блеском. Действительно, современные камеры для сушки порошковой краски способны создать равномерный и быстрый поток горячего воздуха по всей печи, благодаря эффективной и экономичной системе циркуляции и нагревания воздуха. Кстати, у этих камер достаточно надежная термоизоляция, которая напрочь предотвращает теплопотери.
В качестве энергоносителей в камере сушки может применяться не только природный газ, но и дизельное топливо и электроэнергия. Нагрев воздуха в данных печах сушки может осуществляться при помощи теплообменника косвенным методом. Для того чтобы перейти с газа на дизельное топливо и наоборот, нужно всего лишь заменить горелку. Более того, модульная конструкция камер для сушки порошковой краски достаточно быстро позволяет производить сборку, а также устанавливать необходимый ее размер. Техобслуживание данного оборудования проводится также легко и быстро, как и ее сборка.
На сегодняшний день, камера для сушки порошковой краски имеет несколько конструкционных разновидностей. Камеры для сушки бывают непрерывного действия и камерные, их корпуса состоят из кассет с прочными двойными стенками, они выполнены из листового металла. Между прочными двойными стенками прокладывается изолирующий материал. При монтаже отдельных кассет используют уплотнительную массу, для того чтобы плотно изолировать места их стыков. Однако, на участке напыления порошковой краски ни в коем случае нельзя использовать герметики с содержанием силикона, потому как их остатки образуют дефекты - кратеры.
Камера для сушилки порошковой краски представляет собой самую простую конструкцию печи полимеризации , которая загружается в периодическом режиме. Они обычно используются при небольшой пропускной способности либо при существенных изменениях горячей сушки, к примеру, разное время сушки необходимо для изделий с покрытием разной толщины, также для деталей с покрытием ЛКМ применяют разную температуру. Конечно, в данном оборудовании существует один большой недостаток - это загрузка окрашенных деталей отдельными партиями. То есть, в то время, когда двери камеры распахиваются для загрузки или, наоборот, выгрузки изделий, температура, соответственно, падает, и для нагрева до определенного уровня необходимо ждать некоторое время, а для правильной растекаемости краски на рабочей поверхности, необходимая температура должна быть достигнута за более быстрое время. Что, соответственно, сказывается на качестве декоративного покрытия.
Что касается камер для сушки непрерывного действия, то они при серийном производстве загружаются периодически либо непрерывно с применением транспортных установок. У данного типа сушилок выходное и входное отверстие располагаются напротив друг друга. Здесь система транспортирования сконструирована следующим образом: изделия могут менять свое направление движения несколько раз, поэтому возможна реверсивная компоновка. Также существуют корытные сушилки, их конструкция позволяет загрузку изделий сверху вертикально в периодическом режиме. Камера для сушки порошковой краски может быть комбинированная или ее еще называют сушилка блочного типа - это означает, что с камерой полимеризации устанавливают сушильную камеру для удаления влаги.
Применение метода порошковой покраски сопряжено с вероятностью возникновения некоторых дефектов, появление которых довольно просто предотвратить.
Механические включения и «сорность»
Данные дефекты могут быть вызваны следующими причинами
Механические включения и «сорность». Нажмите на фото для увеличения.
- Использование некачественной порошковой краски.
- Загрязнение краски различными инородными включениями непосредственно в установке.
В первом случае рекомендуется производить проверку чистоты порошковой краски путем просеивания через специальное сито либо детального изучения ее состава под микроскопом. Так же можно нанести слой краски из используемой тары и изучить его на предмет нахождения посторонних примесей. При их обнаружении необходимо произвести замену краски.
В случае загрязнения краски инородными включениями следует проверить качество порошковой краски и в питателе установки, и в системе рекуперации. Наличие посторонних примесей свидетельствует о необходимости проведения прочистки установки и просеивания краски. Проверку на предмет отсутствия примесей рекомендуется производить еще и при подготовке окрашиваемой поверхности в процессе нанесения краски.
На появление «шагрени» при применении метода порошковой покраски оказывает влияние целый ряд потенциально возможных причин:
- Превышение срока хранения порошковой краски.
- Превышение максимально допустимой толщины покрытия.
- Недостаточное время и температура отверждения.
- Присутствие в краске крупнодисперсных фракций.
Дефект ЛКП - шагрень. Нажмите на фото для увеличения.
Дефекты, возникающие при порошковой покраске в результате описанных выше причин, устранить довольно просто. Проверка даты изготовления краски позволит проконтролировать превышение регламентированного срока хранения, а толщину покрытия можно отрегулировать путем уменьшения либо увеличения подачи порошка, напряжения либо времени нанесения краски.
Изучение соответствующих рекомендаций по соблюдению необходимого режима отверждения и измерение основных параметров (времени и температуры в камере полимеризации) позволит избежать появления «шагрени» на окрашиваемой поверхности. Дисперсность порошковой краски легко проверяется при помощи сита, оснащенного сеткой №01 (остаток на данной сетке превышает нормативные показатели на 0,5% - 1,0%).
Недостаточная толщина либо полное отсутствие покрытия в отдельных местах
Данные дефекты покраски могут возникнуть из-за различных факторов:
Недостаточная толщина либо полное отсутствие покрытия в отдельных местах. Нажмите на фото для увеличения.
- сложная конфигурация окрашиваемых изделий;
- повышенное напряжение;
- близкое расположение окрашиваемых изделий («экранизация»);
- некачественная подготовка поверхности (недостаточное обезжиривание).
- Недостаточная «укрывистость» краски.
При окраске изделий, имеющих довольно сложную конфигурацию, необходимо уделить особое внимание на недостаточно прокрашенные участки и проверить толщину покрытия. Дефекты покраски, связанные с недостаточной толщиной покрытия, можно устранить путем понижения напряжения. Регулировка расположения распылителей, предварительный нагрев окрашиваемых изделий и применение трибостатики также способствуют более качественному нанесению порошковой краски на обладающие сложной конфигурацией поверхности.
В случаях когда близко расположенные по отношению друг к другу изделия «экранируют», достаточно просто увеличить на подвеске расстояние между ними. При возникновении «укрывистости» краски рекомендуется произвести замену порошковой композиции в случае, когда толщина покрытия соответствует нормативным показателям. Процессу обезжиривания следует уделять повышенное внимание, так как от качественного обезжиривания зависит срок эксплуатации нанесенного на изделие покрытия. Обезжиривание необходимо производить до тех пор, пока остаются характерные следы масляной пленки на поверхности изделия.
Дефект ЛКП - проколы. Нажмите на фото для увеличения.
К числу наиболее распространенных дефектов, возникающих при использовании порошковой краски, относятся проколы. Ниже представлен перечень предполагаемых причин возникновения проколов и мероприятий, предотвращающих их появление. Повышенная влажность, вызванная неправильными условиями транспортировки, хранения либо плохой упаковкой. Данную проблему предотвращает обыкновенная проверка влажности, осуществляемая сушкой навески 1 грамма краски при температуре 50°C в течение двух часов.
При показателе влажности, превышающем 1%, необходимо произвести замену краски либо произвести ее подсушку в специальном питателе. Подача в питатель влажного воздуха. Избежать данного явления, как и в предыдущем случае, поможет проверка влажности порошковой краски из питателя. В случае когда показатель влажности превышает 1%, следует произвести целый ряд специальных мероприятий: очистка сжатого воздуха, замена абсорбента, установка фильтра на магистрали. Недостаточное время сушки изделия после промывки водой (при подготовке поверхности). Нанесение краски на сухую поверхность, достигаемое за счет обеспечения необходимого качества сушки перед нанесением краски в камере окрашивания, позволяет избежать возникновения проколов.
Образование окислов при длительном взаимодействии с воздушной средой. Появление следов ржавчины на поверхности окрашенного изделия после длительного контакта с воздухом свидетельствует о том, что подготовка поверхности произведена не на должном уровне. Сокращение промежутка времени между подготовительными операциями позволяет избежать возникновения проколов. Газовыделение, свойственное толстостенным и литым изделиям. Для того чтобы получить нормальное покрытие после нанесения контрольной порошковой окраски, необходимо производить предварительный прогрев литых и толстостенных изделий.
На возникновение кратеров при покраске порошковой краской могут оказать влияние следующие факторы:
- недостаточная очистка воздуха от масляных капель;
- несоответствие краски техническим условиям;
- недостаточная очистка установки либо случайное загрязнение.
Предотвратить появление кратеров довольно просто. В первом случае достаточно обеспечить нормальную очистку воздуха, путем своевременной замены абсорбента и установки фильтра на магистрали. При несоответствии порошковой краски техническим условиям необходимо произвести ее замену. Тщательная очистка установки так же позволяет избежать возникновения кратеров.
Появление пузырей в слое поверхности и на поверхности может быть вызвано целым рядом факторов:
- нанесение толстого слоя краски, устраняемое путем уменьшения толщины напыления порошка;
- недостаточное обезжиривание поверхности в труднодоступных местах (щели, сварные швы, отверстия). Качественная подготовка поверхности позволяет избежать появления пузырей;
- некоторые дефекты окрашиваемого изделия (следы старой краски, газовыделение из литья), избавиться от которых позволяет предварительный прогрев и удаление старой краски.
Изменение цвета
Изменение цвета порошковой краски может вызвать неравномерное либо повышенное распределение температуры в печи (камере) поляризации или увеличенный промежуток времени, необходимый для полного отверждения покрытия. Данных дефектов можно избежать при помощи проведения контрольных замеров и последующего регулирования температуры в камере поляризации, а также путем проверки и установки (при необходимости) нормального времени поляризации.
Подтеки могут возникнуть из-за следующих факторов:
- увеличения значения давления воздуха на подачу краски (увеличенная концентрация «факела»);
- увеличения времени окрашивания и напряжения;
- увеличения температуры отверждения;
- повышенная способности краски к разливу.
Во избежание негативных последствий в первых двух случаях достаточно произвести регулировку основных параметров покраски: подачи краски, напряжения и времени напыления. Соответствие выбранного температурного режима рекомендованному способствует более качественному отверждению, а избежать появления подтеков позволит метод контрольной окраски в рекомендованном режиме. Если после данной процедуры подтеки не исчезнут, то следует заменить краску.
Трещины в виде мелкой сетки
Потенциально возможных причин появления данного дефекта всего две:
- недоотвержденное покрытие;
- неучтенная теплоемкость изделия.
Недоотвержденное покрытие является результатом несоответствия выбранного режима отверждения и рекомендаций. Данный дефект довольно просто предотвратить обыкновенной регулировкой. Теплоемкость изделия необходимо принимать во внимание при проведении контрольного напыления порошковой краски на листовую сталь. При удовлетворительном состоянии поверхности необходимо произвести увеличение времени отверждения поверхности изделия в камере полимеризации (с учетом прогрева изделия).
Волнистость и неравномерность толщины покрытия. Нажмите на фото для увеличения.
Дефекты, возникающие при использовании метода порошковой покраски, могут иметь ярко выраженный внешний вид – неравномерность толщины покрытия либо волнистость. Подобные дефекты могут быть вызваны ошибочным взаимным расположением пистолетов распылителей по отношению друг к другу, неправильным выбором сопла и нанесением покрытия малой толщины. На толщину наносимого покрытия оказывает влияние регулировка таких параметров окрашивания, как подача порошковой краски и время напыления.
Последствием неправильного подбора сопла и расположения пистолетов распылителей может быть волнистость поверхности либо большой разброс толщины покрытия (неравномерность). Данных дефектов можно избежать в результате проверки толщины покрытия, качественной регулировки расположения распылителей, правильного выбора сопла и подбора оптимального расположения изделия на подвеске в камере.
Смазанный рисунок
Основная причина появления данного дефекта – большой разброс покрытия по толщине. Чтобы не допустить появления смазанного рисунка необходимо произвести регулировку расположения распылителей и найти оптимальное расположение изделия на подвеске.
Газовые раковины
Высокая температура и завышенное время отверждения покрытия могут привести к образованию газовых раковин в порошковой окраске, появление которых поможет избежать проверка выбранных режимов на соответствие рекомендациям, контрольные замеры времени отверждения и температуры в печи, а также проверка качества обезжиривания.
В основе возникновения такой разновидности дефектов порошковой покраски, как низкая адгезия, лежат следующие факторы:
Большой спрос в машиностроении, строительстве и других отраслях промышленности привёл к тому, что для отделки металлических деталей начала использоваться полимерно-порошковая краска, как наиболее эффективный метод и прочный материал. Нанесения в основном осуществляется ручными или автоматическими распылителями методом трибостатической или электростатической зарядки в камерах проходного или тупикового типа.
Мы не сможем рассказать вам досконально всю технологию производства. Но вы здесь получите основы понимания того, как это делается. Кроме того, сможете посмотреть тематическое видео в этой статье в качестве дополнительного материала.
Особенности нанесения в условиях серийного и мелкосерийного производства
Технология нанесения
- Производственный процесс по экологически чист и безвреден для окружающих. При этом получаются превосходные декоративные и защитно-декоративные покрытия. Состав распределяют по поверхности детали, которую затем помещают в печь полимеризации порошковой краски. Там происходит процесс термообработки при определённой температуре.
- Принцип нанесения покрытия в общих чертах заключается в следующем: обрабатываемую деталь заземляют и к ней притягиваются заряжённые частицы краски.
А вообще весь процесс делится на три этапа, это:
- Подготовка детали (обработка поверхности);
- Набрызгивание порошка из распылителя;
- Оплавление нанесённого порошка или полимеризация.
- Качество отделки деталей, в первую очередь, будет зависеть от тщательного соблюдения технологии на каждом из этапов. К тому же, инструкция требует, чтобы полностью отсутствовали заусенцы, выступающие сварные швы, брызги и прожоги, а также масляные и другие пятна.
Подготовка
Примечание. Для удаления старых покрытий, окалины и ржавчины с поверхности в большей степени используются химические и механические способы.
Среди механических способов присутствует струйная и абразивная обработка с помощью пескоструйных, дробеструйных и дробемётных аппаратов. А в качестве обезжиривателей используются водные щелочные и кислые моющие растворы, а также органические растворители.
Учитывая то, органические растворители типа Уайт-спирита, 646 являются вредными для здоровья, инструкция производства ограничивает протирку при обезжиривании ручным способом хлопчатобумажной ветошью и это применяется лишь для небольших партий.
Большие партии обезжириваются не своими руками, а моющими составами при температуре 40⁰C-60⁰C. Сам процесс происходит при помощи окунания детали в жидкость на 5-15 минут или распылением по 1-5 минут с последующей промывкой и сушкой.
Нанесение порошка
Процесс нанесения, как это видно на верхнем фото, осуществляется в камерах порошкового напыления, где действуют системы воздухоотсоса и аспирации для предотвращения попадания частиц в помещение цеха ().
В тупиковых камерах подвешивают изделие и через специальное окно или сбоку КН-2, КН-5 производят окраску, а проходной камере деталь транспортируется мимо маляра, через рабочую область напыления КН-3, КН-6. Для длинномерных деталей существуют двухпостовые проходные камеры КН-3-2, КН-6-2 (две однопостовые камеры разворачивают друг напротив друга на 180⁰).
Поскольку краситель для полимеров, это сам порошок и никаких смешиваний делать не приходится, для мелкосерийного производства был разработан установка ручного напыления (УРН-2). У неё есть преимущество — подача порошка там осуществляется из оригинальной коробки, в которую его упаковали на заводе, то есть его не нужно пересыпать в какую-либо ёмкость.
Патрубок для всасывания оборудован устройством псевдосжижения, что в комплекте с инжектором и вибростолом позволяет переработать порошки с повышенной увлажнённостью.
УРН-2 может быть укомплектована электростатическим и/или трибостатическим пистолетом-распылителем. В нем совмещённый агрегат был разработан для разных видов красок и поверхностей разной сложности. Совмещение позволяет практически мгновенно переходить с режима электростатики на режим трибо. Это увеличивает эффективность производства и при этом, естественно, падает цена выпускаемой продукции.
Примечание. Электростатический способ подразумевает принудительную зарядку частиц при помощи коронирующего электрода, находящегося под высоким напряжением. Трибостатический способ подразумевает зарядку частиц при их прохождении через трибоэлектризующий узел трибоствола (трибоэффект).
Оплавление
После того как на изделие нанесли порошок (это вовсе не полимерная краска для пола) его направляют в печь типа ПП-16 для формирования покрытия с помощью оплавления слоя.
Печи тоже бывают тупиковыми или проходными и состоят теплоизолирующих панелей, одного (тупиковая) или двух (проходная) дверных блоков, а также от одного до восьми нагревательных блоков с системой рециркуляции воздуха. Теплоизолирующая панель сделана из базальтовых плит толщиной 100 мм, которые зажаты между оцинкованными профилированными панелями.
В большинстве случаев температура полимеризации порошковой краски составляет 150⁰C-180⁰C с точностью до +-5⁰C и временем содержания от 10 до 20 минут, хотя это зависит от инструкций производителя порошка. Таким требованиям в наибольшей степени соответствуют печи с рециркуляцией воздуха.
Заключение
Следует отметить, что электропроводная краска Zinga, а также огнезащитные краски по металлу Полистил к полимеризации в печи отношения не имеют. Процесс оплавления проходят исключительно порошковые красители (
Подготовка поверхности:
В начальной стадии любого процесса окрашивания производится предварительная обработка поверхности. Это самый трудоемкий и продолжительный процесс, которому часто не уделяют должного внимания, однако который является необходимым условием получения качественного покрытия.
Подготовка поверхности предопределяет:
- качество,
- стойкость,
- эластичность и долговечность покрытия,
- способствует оптимальному сцеплению порошковой краски с окрашиваемой поверхностью
- и улучшению его антикоррозийных свойств.
При удалении загрязнений с поверхности важно наиболее правильно подобрать метод обработки и состав, применяемый для этой цели. Их выбор зависит от материала обрабатываемой поверхности, вида, степени загрязнения, а также требованиями к условиям и срокам эксплуатации. Для предварительной обработки поверхности перед окрашиванием используются методы обезжиривания, удаления окисных пленок (абразивная очистка, травление) и нанесения конверсионного слоя (фосфатирование, хроматирование).
Из них обязателен лишь первый метод, а остальные применяются в зависимости от конкретных условий.
Процесс подготовки поверхности включает несколько этапов:
- Очистка и обезжиривание поверхности;
- Фосфатирование (фосфатами железа или цинка);
- Споласкивание и закрепление;
- Сушка покрытия.
На первом этапе происходит обезжиривание и очистка обрабатываемой поверхности. Она может производиться механическим или химическим способом.
При механической очистке используются стальные щетки или шлифовальные диски, также в зависимости от размеров поверхности возможна ее притирка чистой тканью, смоченной в растворителе. Химическая очистка осуществляется с использованием щелочных, кислотных или нейтральных веществ, а также растворителей, применяющихся в зависимости от вида и степени загрязнения, типа, материала и размера обрабатываемой поверхности и т.д.
При обработке химическим составом детали могут погружаться в ванну с раствором или подвергаться струйной обработке (раствор подается под давлением через специальные отверстия). В последнем случае эффективность обработки значительно повышается, поскольку поверхность подвергается еще и механическому воздействию, к тому же, осуществляется непрерывное поступление чистого раствора к поверхности.
Нанесение конверсионного подслоя предотвращает попадание под покрытие влаги и загрязнений, вызывающих отслаивание и дальнейшее разрушение покрытия.
Фосфатирование и хроматирование обрабатываемой поверхности с нанесением тонкого слоя неорганической краски способствует улучшению адгезии («сцепляемости») поверхности с краской и предохраняет ее от ржавчины, повышая ее антикоррозийные свойства. Обычно поверхность обрабатывается фосфатом железа (для стальных поверхностей), цинка (для гальванических элементов), хрома (для алюминиевых материалов) или марганца, а также хромового ангидрида. Для алюминия и его сплавов часто применяют методы хроматирования или анодирования. Обработка фосфатом цинка обеспечивает наилучшую защиту от коррозии, однако этот процесс более сложный, чем остальные. Фосфатирование может увеличить сцепление краски с поверхностью в 2-3 раза.
Для удаления окислов (к ним относятся окалина, ржавчина и окисные пленки) используется абразивная чистка, (дробеструйная, дробеметная, механическая) и химическая очистка (травление).
Абразивная очистка осуществляется при помощи абразивных частиц (песка, дроби), стальных или чугунных гранул, а также скорлупы ореха, подающихся на поверхность с большой скоростью с помощью сжатого воздуха или при помощи центробежной силы. Абразивные частицы ударяются о поверхность, откалывая кусочки металла со ржавчиной или окалиной и другими загрязнениями. Такая очистка повышает адгезию покрытия.
Следует помнить, что абразивная очистка может применяться только к материалам, толщина которых составляет более 3 мм. Большую роль играет правильный выбор материала, поскольку слишком крупная дробь может привести к большой шероховатости поверхности, и покрытие будет ложиться неравномерно.
Травление представляет собой удаление загрязнений, окислов и ржавчины путем применения травильных растворов на основе серной, соляной, фосфорной, азотной кислоты или едкого натра. Растворы содержат ингибиторы, которые замедляют растворение уже очищенных участков поверхности.
Химическая очистка отличается большей производительностью и простотой применения, чем абразивная, однако после нее необходимо промывать поверхность от растворов, что вызывает необходимость применения дополнительных очистных сооружений.
На заключительной стадии подготовки поверхности используется пассивирование поверхности, то есть ее обработка соединениями хрома и нитрата натрия. Пассивирование предотвращает появление вторичной коррозии. Его можно применять как после обезжиривания поверхности, так и после фосфатирования или хроматирования поверхности.
После споласкивания и сушки поверхность готова для нанесения порошкового покрытия.
После того как детали покидают участок предварительной обработки, они ополаскиваются и высушиваются. Сушка деталей производится в отдельной печи или в специальной секции печи отвержения. При использовании печи отвержения для просушки размеры системы снижаются, и отпадает необходимость использования дополнительного оборудования.
Нанесение порошковой краски:
Когда детали полностью просушиваются, они охлаждаются при температуре воздуха. После этого они помещаются в камеру напыления, где на них наносится порошковая краска. Основное назначения камеры заключается в улавливании порошковых частиц, не осевших на изделии, утилизации краски и предотвращении ее попадания в помещение. Она оснащена системой фильтров и встроенными средствами очистки (например, бункерами, виброситом и т.д.), а также системами отсоса. Камеры делятся на тупиковые и проходные. Обычно в тупиковых камерах окрашиваются малогабаритные изделия, а в проходных – длинномерные.
Также существуют автоматические камеры напыления, в которых с помощью пистолетов-манипуляторов краска наносится за считанные секунды. Наиболее распространенным способом нанесения порошковых покрытий является электростатическое напыление. Оно представляет собой нанесение на заземленное изделие электростатически заряженного порошка при помощи пневматического распылителя (их также называют пульверизаторами, пистолетами и аппликаторами).
Любой распылитель сочетает в себе ряд различных режимов работы:
- напряжение может распространяться как вверх, так и вниз;
- может регулироваться сила потока (напор, течение струи) краски, а также скорость выхода порошка;
- может меняться расстояние от выхода распылителя до детали, а также размер частиц краски.
Сначала порошковая краска засыпается в питатель. Через пористую перегородку питателя подается воздух под давлением, который переводит порошок во взвешенное состояние, образовывая так называемый «кипящий слой» краски. Сжатый воздух может также подаваться компрессором, создавая при этом местную область «кипящего слоя». Далее аэровзвесь забирается из контейнера при помощи воздушного насоса (эжектора), разбавляется воздухом до более низкой концентрации и подается в напылитель, где порошковая краска за счет фрикции (трения) приобретает электростатический заряд. Это происходит следующим образом. Зарядному электроду, расположенному в главном ружье, сообщается высокое напряжение, за счет чего вырабатывается электрический градиент. Это создает электрическое поле вблизи электронов. Частицы, несущие заряд, противоположный заряду электрода, притягиваются к нему. Когда частицы краски прогоняются через это пространство, частицы воздуха сообщают им электрический заряд.
При помощи сжатого воздуха заряженная порошковая краска попадает на нейтрально заряженную поверхность, оседает и удерживается на ней за счет электростатического притяжения.
Различают две разновидности электростатического распыления:
- электростатическое с зарядкой частиц в поле коронарного заряда
- и трибостатическое напыление.
При электростатическом способе напыления частицы получают заряд от внешнего источника электроэнергии (например, коронирующего электрода), а при трибостатическом - в результате их трения о стенки турбины напылителя.
При первом способе нанесения краски применяется высоковольтная аппаратура.
Порошковая краска приобретает электрический заряд через ионизированный воздух в области коронного разряда между электродами заряжающей головки и окрашиваемой поверхностью. Коронный разряд поддерживается источником высокого напряжения, встроенным в распылитель. Недостатком этого способа считается то, что при его использовании могут возникать затруднения с нанесением краски на поверхности с глухими отверстиями и углублениями. Поскольку частицы краски прежде осаждаются на выступающих участках поверхности, она может быть прокрашена неравномерно.
При трибостатическом напылении краска наносится с помощью сжатого воздуха и удерживается на поверхности за счет заряда, приобретаемого в результате трения о диэлектрик. «Трибо» в переводе означает «трение». В качестве диэлектрика используется фторопласт, из которого изготовлены отдельные части краскораспылителя. При трибостатическом напылении источник питания не требуется, поэтому этот метод гораздо дешевле. Его применяют для окрашивания деталей, имеющих сложную форму. К недостаткам трибостатического метода можно отнести низкую степень электризации, которая заметно снижает его производительность в 1.5-2 раза по сравнению с электростатическим.
На качество покрытия может влиять объем и сопротивление краски, форма и размеры частиц. Эффективность процесса также зависит от размеров и формы детали, конфигурации оборудования, а также времени, затраченного на покраску.
В отличие от традиционных способов окрашивания, порошковая краска не теряется безвозвратно, а попадает в систему регенерации камеры напыления и может использоваться повторно. В камере поддерживается пониженное давление, которое препятствует выходу из нее частиц порошка, поэтому необходимость в применении рабочими респираторов практически отпадает.
Полимеризация:
На заключительной стадии окрашивания происходит плавление и полимеризация нанесенной на изделие порошковой краски в камере полимеризации.
После нанесения порошковой краски изделие направляется на стадию формирования покрытия. Она включает оплавление слоя краски, последующее получение пленки покрытия, его отвержения и охлаждения. Процесс оплавления происходит в специальной печи оплавления и полимеризации. Существует много разновидностей камер полимеризации, их конструкция может меняться в зависимости от условий и особенностей производства на конкретном предприятии. С виду печь представляет собой сушильный шкаф с электронной «начинкой». При помощи блока управления можно контролировать температурный режим печи, время окрашивания и настраивать таймер для автоматического отключения печи при завершении процесса. Источниками энергии для печей полимеризации могут служить электричество, природный газ и даже мазут.
Печи делятся на проходные и тупиковые, горизонтальные и вертикальные, одно- и многоходовые. Для тупиковых печей важным моментом является скорость подъема температуры. Этому требованию в наибольшей степени соответствуют печи с рециркуляцией воздуха. Камеры нанесения из диэлектриков с электропроводным покрытием обеспечивают равномерное распределение порошковой краски на поверхности детали, однако при неправильном использовании они могут накапливать электрические заряды и представлять опасность.
Оплавление и полимеризация происходит при температуре 150-220 °С в течение 15-30 минут, после чего порошковая краска образует пленку (полимеризуется). Основным требованием, предъявляемым к камерам полимеризации, является поддержание постоянной заданной температуры (в разных частях печи допускается разброс температуры не менее 5°С) для равномерного прогрева изделия.
При нагреве в печи изделия с нанесенным слоем порошковой краски частицы краски расплавляются, переходят в вязкое состояние и сливаются в непрерывную пленку, при этом вытесняя воздух, находившийся в слое порошковой краски. Часть воздуха может все же оставаться в пленке, образовывая поры, ухудшающие качество покрытия. Для избежания появления пор окраску следует проводить при температуре, превышающей температуру плавления краски, а покрытие наносить тонким слоем.
При дальнейшем нагревании изделия краска глубоко проникает в поверхность и затем отвердевает. На этом этапе формируется покрытие с заданными характеристиками структуры, внешнего вида, прочности, защитных свойств и т.д.
При окраске больших металлических деталей температура их поверхности поднимается значительно медленнее, чем у тонкостенных изделий, поэтому покрытие не успевает полностью затвердеть, в результате чего снижается его прочность и адгезия. В этом случае деталь предварительно нагревают или увеличивают время его отвержения.
Отвержение рекомендуется производить при более низких температурах и в течение более продолжительного периода времени. При таком режиме снижается вероятность возникновения дефектов, и улучшаются механические свойства покрытия.
На время получения необходимой температуры на поверхности изделия влияют масса изделия и свойства материала, из которого изготовлена деталь.
После отвержения поверхность подвергается охлаждению, которое обеспечивается за счет удлинения конвейерной цепи. Также для этой цели используются специальные камеры охлаждения, которые могут являться частью печи отвержения.
Соответствующий режим для формирования покрытия необходимо подбирать с учетом вида порошковой краски, особенностей окрашиваемого изделия, типа печи т.д. Необходимо помнить, что для нанесения порошкового покрытия решающую роль играет температура, особенно при нанесении покрытия на термостойкие пластмассы или изделия из древесины.
По окончании полимеризации изделие охлаждается на воздухе. После остывания изделия покрытие готово.
Типы порошковых красок
Порошковые краски из эпоксидной смолы:
Используются порошки из эпоксидной смолы которые обеспечивают высокую степень глянцевитости гладкости покрытия, отличные характеристики по адгезии, гибкости и твердости, а также стойкость к химическому воздействию и к растворителям.
Основными недостатками являются низкая теплоустойчивость и светоустойчивость, а также выраженная тенденция желтеть при повышении температуры и под воздействием рассеянного дневного света. Акриловые порошковые краски: широко используются при нанесении покрытий на поверхности; имеют хорошую степень сохранения таких характеристик, как глянец и цвет, под воздействием внешних раздражителей, а также обладают стойкостью по отношению к тепловому воздействию и щелочным средам.
Порошковые краски из сложного полиэфира:
Общие характеристики совпадают с характеристиками порошков из эпоксидной и акриловой смол. Такие порошки обладают высокой прочностью и высокой устойчивостью к пожелтению под воздействием ультрафиолетового света. Большая часть покрытий, имеющихся на зданиях в настоящее время, основана на линейных полиэфирах.
Гибридные порошковые краски с содержанием эпоксидной и полиэфирной смол:
Содержат в качестве компонента большую часть (иногда более 50%) специальной полиэфирной смолы. Свойства таких гибридов напоминают свойства порошков из эпоксидной смолы, однако, их дополнительным преимуществом является повышенная стойкость к пожелтению в результате пересушки и улучшенная способность переносить погодные условия. В настоящее время гибридные порошки считаются основой отрасли порошковых красок.
Полиуретановые порошковые краски: обладают ровным набором хороших физических и химических характеристик, а также обеспечивают хорошую прочность внешней стороны.
Есть четыре основных процесса порошковой покраски покрытий: электростатическое распыление, способ нанесения с помощью потока воздуха (fluidized bed), электростатическое распыление с помощью воздушного потока (electrostatic fluidized bed) и нанесение с помощью пламени (flame spray).
Электростатическое распыление – наиболее популярный на сегодняшний день метод порошковой покраски. Для всех прикладных методов, подготовка поверхности (то есть, очистка и конверсионное покрытие) должна создавать хорошую основу для нанесения покрытия. Поверхность должна быть подготовлена соответствующим образом.
Особенности четырех различных методов порошкового покрытия:
- В процессе электростатического распыления сухие порошковые частицы приобретают электрический заряд, в то время как окрашиваемая поверхность электрически нейтральна. Заряженный порошок и нейтральная рабочая область создают электростатическое поле, которое притягивает сухие частицы краски к поверхности. Попадая на окрашиваемую поверхность, порошковое покрытие сохраняет свой заряд, который удерживает порошок на поверхности. Окрашенная таким образом поверхность помещается в специальную печь, где частицы краски тают и впитываются поверхностью, постепенно теряя свой заряд.
- Второй метод нанесения предусматривает, что порошковые частицы краски удерживаются во взвешенном состоянии с помощью потока воздуха. Вступая в контакт с предварительно разогретой окрашиваемой поверхностью, эти частички тают и прочно удерживаются на ее поверхности. Толщина порошкового покрытия зависит от температуры, степени нагрева поверхности, а также от длительности контакта с порошковыми частицами. При нанесении покрытий из термопластика последующее нагревание в большинстве обычно не требуется. Однако для полного затвердевания порошкового покрытия в некоторых случаях необходимо дополнительное нагревание.
- Электростатический способ нанесения порошковой краски с помощью воздушного потока во многом схож с предыдущим, однако в этом случае поток воздуха, удерживающий частицы краски, электрически заряжен. Ионизированные молекулы воздуха заряжают частицы краски при движении наверх в специальной печи, куда помещают окрашиваемую поверхность, и формируют облако заряженных частиц. Окрашиваемая поверхность, обладающая нейтральным зарядом, покрывается слоем заряженных частиц. В этом случае предварительного нагревания окрашиваемой поверхности не требуется. Эта технология подходит для окрашивания небольших и простых по форме объектов.
- Метод окрашивания с помощью пламени появился сравнительно недавно и применялся, в основном, для порошковых покрытий из термопластика. Термопластический порошок плавится под воздействием сжатого воздуха и попадает в специальный пистолет, где проходит через горящий пропан. Расплавленные частицы краски наносятся на окрашиваемую поверхность, формируя прочный слой. Поскольку этот способ не требует прямого нагревания, он подходит для большинства материалов. С помощью данной технологии можно окрашивать поверхности из металла, древесины, каучука и камня. Нанесение краски с помощью пламени также подходит для больших или закрепленных объектов.
Выбор порошковой краски зависит от желаемых характеристик поверхности. Свойства порошков должны отвечать индивидуальным запросам клиента, предъявляемым по отношению к поверхностям. Порошковые покрытия подразделяются на разные категории, в зависимости от особенностей применения. Термопластические покрытия применяются для окрашивания более плотных поверхностей и обеспечивают покрытиям долговечность, в то время как термостатическое порошковое покрытие применяется для окраски более тонких материалов, в основном, в декоративных целях. В порошковых красках используются полиэтилен, поливинил, нейлон, фторполимеры, эпоксидная смола, полиэстер и акриловые смолы.
Совместимость материалов
- Технология электростатического нанесения с помощью воздушного потока лучше всего подходит для окрашивания небольших металлических предметов.
- Как и для всех типов окрашивания, порошковые покрытия применяют на чистую, гладкую и хорошо подготовленную поверхность. Окрашиваемая поверхность не нуждается в предварительной обработке, однако дополнительная подготовка поверхности (например, обработка фосфатом железа для стали, фосфатом цинка для гальванических элементов или стали и фосфатом хрома для алюминиевых поверхностей) заметно улучшает качество порошкового покрытия.
- Только те материалы, которые могут нагреваться до высокой температуры, могут подвергаться порошковому окрашиванию по технологии электростатического распыления, нанесения с помощью потока воздуха или электростатического нанесения с помощью воздуха. Следовательно, эти технологии более всего подходят для небольших металлических объектов.
Здоровье и безопасность
- Порошковые краски могут легко воспламеняться вблизи открытых источников огня. Концентрация порошка в воздухе должна надежно контролироваться для обеспечения безопасного рабочего пространства. Несмотря на отсутствие легко воспламеняющихся растворителей, любой органический материал наподобие пыли или порошка может сформировать взрывчатую субстанцию в воздухе.
- При окрашивании следует избегать вдыхания порошковой краски, поскольку это может привести к повреждению легких и защитных мембран организма.
Типовой процесс порошковой окраски представляет собой следующую последовательность операций:
- Подготовка поверхности изделия к окраске.
- Нанесение на окрашиваемую поверхность порошкового покрытия в камере напыления с помощью напылителя, в котором частицам полимерного порошка придается электрический заряд, и который с помощью сжатого воздуха транспортирует порошок к детали. Под действием электростатических сил частицы порошка притягиваются к поверхности окрашиваемой детали и равномерными слоями располагаются на ней.
- Нагрев изделия в печи оплавления и полимеризации при температуре 140-220°C (в зависимости от вида краски). В результате нагревания порошок оплавляется, полимеризуется и покрытие приобретает необходимые защитные и декоративные свойства.