Понятие о деформации изгиба. Чистый изгиб

Изгибом называется деформация, при которой ось стержня и все его волокна, т. е. продольные линии, параллельные оси стержня, искривляются под действием внешних сил. Наиболее простой случай изгиба получается тогда, когда внешние силы будут лежать в плоскости, проходящей через центральную ось стержня, и не дадут проекций на эту ось. Такой случай изгиба называют поперечным изгибом. Различают плоский изгиб и косой.

Плоский изгиб – такой случай, когда изогнутая ось стержня расположена в той же плоскости, в которой действуют внешние силы.

Косой (сложный) изгиб – такой случай изгиба, когда изогнутая ось стержня не лежит в плоскости действия внешних сил.

Работающий на изгиб стержень обычно называют балкой.

При плоском поперечном изгибе балок в сечении с системой координат у0х могут возникать два внутренних усилия – поперечная сила Q у и изгибающий момент М х; в дальнейшем для них вводятся обозначения Q и M. Если в сечении или на участке балки поперечная сила отсутствует (Q=0), а изгибающий момент не равен нулю или М – const, то такой изгиб принято называть чистым .

Поперечная сила в каком-либо сечении балки численно равна алгебраической сумме проекций на ось у всех сил (включая опорные реакции), расположенных по одну сторону (любую) от проведенного сечения.

Изгибающий момент в сечении балки численно равен алгебраической сумме моментов всех сил (включая и опорные реакции), расположенных по одну сторону (любую) от проведенного сечения относительно центра тяжести этого сечения, точнее, относительно оси, проходящей перпендикулярно плоскости чертежа через центр тяжести проведенного сечения.

Сила Q представляет равнодействующую распределенных по сечению внутренних касательных напряжений , а момент М сумму моментов вокруг центральной оси сечения Х внутренних нормальных напряжений.

Между внутренними усилиями существует дифференциальная зависимость

которая используется при построении и проверке эпюр Q и M.

Поскольку часть волокон балки растягивается, а часть сжимается, причем переход от растяжения к сжатию происходит плавно, без скачков, в средней части балки находится слой, волокна которого только искривляются, но не испытывают ни растяжения, ни сжатия. Такой слой называют нейтральным слоем . Линия, по которой нейтральный слой пересекается с поперечным сечением балки, называется нейтральной линие й или нейтральной осью сечения. Нейтральные линии нанизаны на ось балки.

Линии, проведенные на боковой поверхности балки перпендикулярно оси, остаются плоскими при изгибе. Эти опытные данные позволяют положить в основу выводов формул гипотезу плоских сечений. Согласно этой гипотезе сечения балки плоские и перпендикулярные к ее оси до изгиба, остаются плоскими и оказываются перпендикулярными изогнутой оси балки при ее изгибе. Поперечное сечение балки при изгибе искажается. За счет поперечной деформации размеры поперечного сечения в сжатой зоне балки увеличиваются, а в растянутой сжимаются.

Допущения для вывода формул. Нормальные напряжения

1) Выполняется гипотеза плоских сечений.

2) Продольные волокна друг на друга не давят и, следовательно, под действием нормальных напряжений линейные растяжения или сжатия работают.

3) Деформации волокон не зависят от их положения по ширине сечения. Следовательно, и нормальные напряжения, изменяясь по высоте сечения, остаются по ширине одинаковыми.

4) Балка имеет хотя бы одну плоскость симметрии, и все внешние силы лежат в этой плоскости.

5) Материал балки подчиняется закону Гука, причем модуль упругости при растяжении и сжатии одинаков.

6) Соотношения между размерами балки таковы, что она работает в условиях плоского изгиба без коробления или скручивания.

При чистом изгибе балки на площадках в ее сечении действуют только нормальные напряжения , определяемые по формуле:

где у – координата произвольной точки сечения, отчитываемая от нейтральной линии — главной центральной оси х.

Нормальные напряжения при изгибе по высоте сечения распределяются по линейному закону . На крайних волокнах нормальные напряжения достигают максимального значения, а в центре тяжести сечения равны нулю.

Характер эпюр нормальных напряжений для симметричных сечений относительно нейтральной линии

Характер эпюр нормальных напряжений для сечений, не обладающих симметрией относительно нейтральной линии

Опасными являются точки, наиболее удаленные от нейтральной линии.

Выберем некоторое сечение

Для любой точки сечения,назовем ее точкой К , условие прочности балки по нормальным напряжениям имеет вид:

, где н.о. — это нейтральная ось

это осевой момент сопротивления сечения относительно нейтральной оси. Его размерность см 3 , м 3 . Момент сопротивления характеризует влияние формы и размеров поперечного сечения на величину напряжений.

Условие прочности по нормальным напряжениям:

Нормальное напряжение равно отношению максимального изгибающего момента к осевому моменту сопротивления сечения относительно нейтральной оси.

Если материал неодинаково сопротивляется растяжению и сжатию, то необходимо использовать два условия прочности: для зоны растяжения с допускаемым напряжением на растяжение; для зоны сжатия с допускаемым напряжением на сжатие.

При поперечном изгибе балки на площадках в ее сечении действуют как нормальные , так и касательные напряжения.

Чистым изгибом называется такой вид изгиба, при котором имеет место действие только изгибающего момента (рис. 3.5, а). Мысленно проведем плоскость сечения I-I перпендикулярно продольной оси балки на расстоянии * от свободного конца балки, к которому приложен внешний момент m z . Осуществим действия, аналогичные тем, которые были выполнены нами при определении напряжений и деформаций при кручении, а именно:

  • 1) составим уравнения равновесия мысленно отсеченной части детали;
  • 2) определим деформацию материала детали исходя из условий совместности деформаций элементарных объемов данного сечения;
  • 3) решим уравнения равновесия и совместности деформаций.

Из условия равновесия отсеченного участка балки (рис. 3.5, б)

получим, что момент внутренних сил M z равен моменту внешних сил т: М = т.

Рис. 3.5.

Момент внутренних сил создается нормальными напряжениями o v , направленными вдоль оси х. При чистом изгибе нет внешних сил, поэтому сумма проекций внутренних сил на любую координатную ось равна нулю. На этом основании запишем условия равновесия в виде равенств

где А - площадь поперечного сечения балки (стержня).

При чистом изгибе внешние силы F x , F, F v а также моменты внешних сил т х, т у равны нулю. Поэтому остальные уравнения равновесия тождественно равны нулю.

Из условия равновесия при о^О следует, что

нормальные напряжение с х в поперечном сечении принимают как положительные, так и отрицательные значения. (Опыт показывает, что при изгибе материал нижней стороны бруса на рис. 3.5, а растянут, а верхней - сжат.) Следовательно, в поперечном сечении при изгибе есть такие элементарные объемы (переходного слоя от сжатия к растяжению), в которых удлинение или сжатие отсутствует. Это - нейтральный слой. Линия пересечения нейтрального слоя с плоскостью поперечного сечения называется нейтральной линией.

Условия совместности деформаций элементарных объемов при изгибе формируется на основе гипотезы плоских сечений: плоские до изгиба поперечные сечения балки (см. рис. 3.5, б) останутся плоскими и после изгиба (рис. 3.6).

В результате действия внешнего момента брус изгибается, а плоскости сечений I-I и II-II поворачиваются друг относительно друга на угол dy (рис. 3.6, б). При чистом изгибе деформация всех сечений вдоль оси балки одинакова, поэтому радиус р к кривизны нейтрального слоя балки вдоль оси х один и тот же. Так как dx = р K dip, то кривизна нейтрального слоя равна 1 / р к = dip / dx и постоянна по длине балки.

Нейтральный слой не деформируется, его длина до и после деформации равна dx. Ниже этого слоя материал растянут, выше - сжат.


Рис. 3.6.

Значение удлинения растянутого слоя, находящегося на расстоянии у от нейтрального, равно ydq. Относительное удлинение этого слоя:

Таким образом, в принятой модели получено линейное распределение деформаций в зависимости от расстояния данного элементарного объема до нейтрального слоя, т.е. по высоте сечения балки. Полагая, что нет взаимного надавливания параллельных слоев материала друг на друга (о у = 0, а, = 0), запишем закон Гука для линейного растяжения:

Согласно (3.13) нормальные напряжения в поперечном сечении балки распределены по линейному закону. Напряжение элементарного объема материала, наиболее удаленного от нейтрального слоя (рис. 3.6, в ), максимально и равно

? Задача 3.6

Определить предел упругости стального клинка толщиной / = 4 мм и длиной / = 80 см, если его изгиб в полуокружность не вызывает остаточной деформации.

Решение

Напряжение при изгибе o v = Еу / р к. Примем y max = t / 2и р к = / / к.

Предел упругости должен соответствовать условию с уп > c v = 1 / 2 кЕ t /1.

Ответ: о = ] / 2 к 2 10 11 4 10 _3 / 0,8 = 1570 МПа; предел текучести этой стали а т > 1800 МПа, что превышает а т самых прочных пружинных сталей. ?

? Задача 3 .7

Определить минимальный радиус барабана для намотки ленты толщиной / = 0,1 мм нагревательного элемента из никелевого сплава, при котором материал ленты пластически не деформируется. Модуль Е= 1,6 10 5 МПа, предел упругости о уп = 200 МПа.

Ответ: минимальный радиус р = V 2 ?ir/a yM = У? 1,6-10 11 0,1 10 -3 / (200 10 6) = = 0,04 м. ?

1. При совместном решении первого уравнения равновесия (3.12) и уравнения совместности деформаций (3.13) получим

Значение Е / р к ф 0 и одинаково для всех элементов dA площади интегрирования. Следовательно, данное равенство удовлетворяется только при условии

Этот интеграл называют статическим моментом площади поперечного сечения относительно оси z? Каков физический смысл этого интеграла?

Возьмем пластинку постоянной толщины /, но произвольного профиля (рис. 3.7). Подвесим эту пластинку в точке С так, чтобы она находилась в горизонтальном положении. Обозначим символом у м удельный вес материала пластинки, тогда вес элементарного объема площадью dA равен dq = уJdA. Так как пластинка находится в состоянии равновесия, то из равенства нулю проекций сил на ось у получим

где G = у M tA - вес пластинки.


Рис. 3.7.

Сумма моментов сил всех сил относительно оси z , проходящей в любом сечении пластинки, также равна нулю:

Учитывая, что Y c = G, запишем

Таким образом, если интеграл вида J xdA по площади А равен

нулю, то х с = 0. Это означает, что точка С совпадает с центром тяжести пластинки. Следовательно, из равенства S z = J ydA = 0 при из-

гибе следует, что центр тяжести поперечного сечения балки находится на нейтральной линии.

Следовательно, значение у с поперечного сечения балки равно нулю.

  • 1. Нейтральная линия при изгибе проходит через центр тяжести поперечного сечения балки.
  • 2. Центр тяжести поперечного сечения является центром приведения моментов внешних и внутренних сил.

Задача 3.8

Задача 3.9

2. При совместном решении второго уравнения равновесия (3.12) и уравнения совместности деформаций (3.13) получим

Интеграл J z = J y 2 dA называется моментом инерции поперечного

сечения балки (стержня) относительно оси z, проходящей через центр тяжести поперечного сечения.

Таким образом, M z = Е J z / р к. Учитывая, что с х = Ее х = Еу / р к и Е / р к = а х / у, получим зависимость нормальных напряжений о х при изгибе:

1. Напряжение изгиба в данной точке сечения не зависит от модуля нормальной упругости Е, но зависит от геометрического параметра поперечного сечения J z и расстояния у от данной точки до центра тяжести поперечного сечения.

2. Максимальное напряжение при изгибе имеет место в элементарных объемах, наиболее удаленных от нейтральной линии (см. рис. 3.6, в):

где W z - момент сопротивления поперечного сечения относительно оси Z-

Условие прочности при чистом изгибе аналогично условию прочности при линейном растяжении:

где [а м | - допускаемое напряжение при изгибе.

Очевидно, что внутренние объемы материала, особенно вблизи нейтральной оси, практически не нагружены (см. рис. 3.6, в). Это противоречит требованию минимизировать материалоемкость конструкции. Ниже будут показаны некоторые способы преодоления данного противоречия.

1. Прямой чистый изгиб Поперечный изгиб - деформация стержня силами, перпендикулярными оси (поперечными) и парами, плоскости действия которых перпендикулярны нормальным сечениям. Стержень работающий на изгиб называют балкой. При прямом чистом изгибе в поперечном сечении стержня возникает только один силовой фактор - изгибающий момент Mz. Так как Qy=d. Mz/dx=0, то Mz=const и чистый прямой изгиб может быть реализован при нагружении стержня парами сил, приложенными в торцевых сечениях стержня. σ Поскольку изгибающий момент Mz по определению равен сумме моментов внутренних сил относительно оси Оz с нормальными напряжениями его связывает выкающее из этого определения уравнение статики:

Анализ напряженного состояния при чистом изгибе Проанализируем деформации модели стержня на боковой поверхности которого нанесена сетка продольных и поперечных рисок: Поскольку поперечные риски при изгибе стержня парами сил, приложенными в торцевых сечениях, остаются прямыми и перпендикулярными к искривленным продольным рискам, это позволяет сделать вывод о выполнении гипотезы плоских сечений, а следовательно Замеряя изменение расстояний между продольными рисками, приходим к выводу о справедливости гипотезы о ненадавливании продольных волокон, то есть То есть изо всех компонентов тензора напряжений при чистом изгибе не равно нулю только напряжение σx=σ и чистый прямой изгиб призматического стержня сводится к одноосному растяжению или сжатию продольных волокон напряжениями σ. При этом часть волокон находится в зоне растяжения (на рис. это-нижние волокна), а другая часть-в зоне сжатия (верхние волокна). Эти зоны разделены нейтральным слоем (n-n), не меняющим своей длины, напряжения в котором равны нулю.

Правило знаков изгибающих моментов Правила знаков моментов в задачах теоретической механики и сопротивления материалов не совпадают. Причина этого в различии рассматриваемых процессов. В теоретической механике рассматриваемым процессом является движение или равновесие твердых тел, поэтому два момента на рисунке стремящиеся повернуть Mz стержень в разные стороны (правый момент по часовой стрелке, а левый – против) имеют в задачах теоретической механики разный знак. В задачах сопромата рассматриваются возникающие в теле напряжения и деформации. С этой точки зрения оба момента вызывают в верхних волокнах напряжения сжатия, а в нижних напряжения растяжения, поэтому моменты имеют одинаковый знак. Правила знаков изгибающих моментов относительно сечения С-С представлены на схеме:

Расчет значений напряжений при чистом изгибе Выведем формулы для расчета радиуса кривизны нейтрального слоя и нормальных напряжений в стержне. Рассмотрим призматический стержень в условиях прямого чистого изгиба с поперечным сечением, симметричным относительно вертикальной оси Oy. Ось Ox поместим на нейтральном слое, положение которого заранее неизвестно. Отметим, что постоянство поперечного сечения призматического стержня и изгибающего момента (Mz=сonst), обеспечивает постоянство радиуса кривизны нейтрального слоя по длине стержня. При изгибе с постоянной кривизной нейтральный слой стержня становится дугой окружности, ограниченной углом φ. Рассмотрим вырезанный из стержня бесконечно малый элемент длиной dx. При изгибе он превратится в бесконечно малый элемент дуги, ограниченный бесконечно малым углом dφ. φ ρ dφ С учетом зависимостей между радиусом окружности, углом и длиной дуги:

Поскольку интерес представляют деформации элемента, определяемые относительным смещением его точек, одно из торцевых сечений элемента можно считать неподвижным. Ввиду малости dφ считаем, что точки поперечного сечения при повороте на этот угол перемещаются не по дугам, а по соответствующим касательным. Вычислим относительную деформацию продольного волокна АВ, отстоящего от нейтрального слоя на у: Из подобия треугольников COO 1 и O 1 BB 1 следует, что то есть: Продольная деформация оказалась линейной функцией расстояния от нейтрального слоя, что является прямым следствием закона плоских сечений. Тогда нормальное напряжение, растягивающее волокно АВ, на основании закона Гука будет равно:

Полученная формула не пригодна для практического использования, так как содержит две неизвестные: кривизну нейтрального слоя 1/ρ и положение нейтральной оси Ох, от которой отсчитывается координата у. Для определения этих неизвестных воспользуемся уравнениями равновесия статики. Первое выражает требование равенства нулю продольной силы Подставляя в это уравнение выражение для σ: и учитывая, что, получаем, что: Интеграл в левой части этого уравнения представляет собой статический момент поперечного сечения стержня относительно нейтральной оси Ох, который может быть равным нулю только относительно центральной оси (оси проходящей через центр тяжести сечения). Поэтому нейтральная ось Ох проходит через центр тяжести поперечного сечения. Вторым уравнением равновесия статики является, связывающее нормальные напряжения с изгибающим моментом. Подставляя в это уравнение выражение для напряжений, получим:

Интеграл в полученном уравнении ранее изучен: Jz- момент инерции относительно оси Оz. В соответствии с выбранным положение осей координат он же главный центральный момент инерции сечения. Получаем формулу для кривизны нейтрального слоя: Кривизна нейтрального слоя 1/ρ является мерой деформации стержня при прямом чистом изгибе. Кривизна тем меньше, чем больше величина EJz, называемая жесткостью поперечного сечения при изгибе. Подставляя выражение в формулу для σ, получаем: Таким образом, нормальные напряжения при чистом изгибе призматического стержня являются линейной функцией координаты у и достигают наибольших значений в волокнах, наиболее удаленных от нейтральной оси. геометрическая характеристика, имеющая размерность м 3 называется момент сопротивления при изгибе.

Определение моментов сопротивления Wz поперечных сечений - У простейших фигур в справочнике (лекция 4) или рассчитать самостоятельно - У стандартных профилей в сортаменте ГОСТ

Расчет на прочность при чистом изгибе Проектировочный расчет Условие прочности при расчете чистого изгиба будет иметь вид: Из данного условия определяют Wz, а далее либо подбирают нужный профиль из сортамента стандартного проката, либо по геометрическим зависимостям рассчитывают размеры сечения. При расчете балок из хрупких материалов следует различать наибольшие растягивающие и наибольшие сжимающие напряжения, которые сравниваются соответственно с допускаемыми напряжениями на растяжение и сжатие. Условий прочности в этом случае будет два, отдельно по растяжению и по сжатию: Здесь - соответственно допускаемые напряжения на растяжение и на сжатие.

2. Прямой поперечный изгиб τxy τxz σ При прямом поперечном изгибе в сечениях стержня возникает изгибающий момент Мz и поперечная сила Qy, которые связаны с нормальными и касательными напряжениями Выведенная в случае чистого изгиба стержня формула для расчета нормальных напряжений в случае прямого поперечного изгиба, строго говоря, неприменима, поскольку из-за сдвигов, вызываемых касательными напряжениями, происходит депланация (искривление) поперечных сечении, то есть нарушается гипотеза плоских сечений. Однако для балок с высотой сечения h

При выводе условия прочности при чистом изгибе использовалась гипотеза об отсутствии поперечного взаимодействия продольных волокон. При поперечном изгибе наблюдаются отклонения от этой гипотезы: а) в местах приложения сосредоточенных сил. Под сосредоточенной силой напряжения поперечного взаимодействия σy могут быть достаточно велики и во много раз превышать продольные напряжения, убывая при этом, в соответствии с принципом Сен-Венана, по мере удаления от точки приложения силы; б) в местах приложения распределенных нагрузок. Так, в случае, приведенном на рис, напряжения от давления на верхние волокна балки. Сравнивая их с продольными напряжениями σz, имеющими порядок: приходим к выводу, что напряжения σy

Расчет касательных напряжений при прямом поперечном изгибе Примем, что касательные напряжения равномерно распределены по ширине поперечного сечения. Непосредственное определение напряжений τyx затруднительно, поэтому находим равные им касательные напряжения τxy, возникающие на продольной площадке с координатой у элемента длиной dx, вырезанного из балки z x Mz

От этого элемента продольным сечением, отстоящим от нейтрального слоя на у, отсекаем верхнюю часть, заменяя действие отброшенной нижней части касательными напряжениями τ. Нормальные напряжения σ и σ+dσ , действующие на торцевых площадках элемента, также заменим их равнодействующими y Mz τ Mz+d. Mz by ω y z Qy Qy +d. Qy dx Nω+d Nω d. T статический момент отсеченной части площади поперечного сечения ω относительно оси Оz. Рассмотрим условие равновесия отсеченного элемента составив для него уравнение статики Nω dx b

откуда после несложных преобразований, учитывая, что получим Формула Журавского Kасательные напряжения по высоте сечения меняются по закону квадратичеокой параболы, достигая максимума на нейтральной оси Mz z Учитывая, что наибольшие нормальные напряжения возникают в крайних волокнах, где касательные напряжения отсутствуют, а наибольшие касательные напряжения во многих случаях имеют место в нейтральном слое, где нормальные напряжения равны нулю, условия прочности в этих случаях формулируются раздельно по нормальным и касательным напряжениям

3. Составные балки при изгибе Касательные напряжения в продольных сечениях являются выражением существующей связи между слоями стержня при поперечном изгибе. Если эта связь в некоторых слоях нарушена, характер изгиба стержня меняется. В стержне, составленном из листов, каждый лист при отсутствии сил трения изгибается самостоятельно. Изгибающий момент равномерно распределяется между составными листами. Максимальное значение изгибающего момента будет в середине балки и будет равно. Mz=P·l. Наибольшее нормальное напряжение в поперечном сечении листа равно:

Если листы плотно стянуть достаточно жесткими болтами, стержень будет изгибаться как целый. В этом случае наибольшее нормальное напряжение оказывается в n раз меньше, т. е. В поперечных сечениях болтов при изгибе стержня возникают поперечные силы. Наибольшая поперечная сила будет в сечении, совпадающем с нейтральной плоскостью изогнутого стержня.

Эту силу можно определить из равенства сумм поперечных сил в сечениях болтов и продольной равнодействующей касательных напряжений в случае целого стержня: где m - число болтов. Сопоставим изменение кривизны стержня в заделке в случае связанного и несвязанного пакетов. Для связанного пакета: Для несвязанного пакета: Пропорционально изменениям кривизны меняются и прогибы. Таким образом, по сравнению с целым стержнем набор свободно сложенных листов оказывается в n 2 раз более гибким и только в n раз менее прочным. Это различие в коэффициентах снижения жесткости и прочности при переходе к листовому пакету используют на практике при создании гибких рессорных подвесок. Силы трения между листами повышают жесткость пакета, так как частично восстанавливают касательные силы между слоями стержня, устраненные при переходе к листовому пакету. Рессоры нуждаются поэтому в смазке листов и их следует оберегать от загрязнения.

4. Рациональные формы поперечных сечений при изгибе Наиболее рациональным является сечение, обладающее минимальной площадью при заданной нагрузке на балку. В этом случае расход материала на изготовление балки, будет минимальным. Для получения балки минимальной материалоемкости нужно стремиться к тому, чтобы по возможности наибольший объем материала работал при напряжениях, равных допускаемым или близким к ним. Прежде всего рациональное сечение балки при изгибе должно удовлетворять условию равнопрочности растянутой и сжатой зон балки. Для этого необходимо, чтобы наибольшие напряжения растяжения и наибольшие напряжения сжатия одновременно достигали допускаемых напряжений. Приходим к рациональному для пластичного материала сечению в форме симметричного двутавра, у которого возможно большая часть материала сосредоточена на полках, соединенных стенкой, толщина которой назначается из условий прочности стенки по касательным напряжениям. . К двутаврому сечению близко по критерию рациональности так называемое коробчатое сечение

Для балок из хрупкого материала наиболее рациональным будет сечение в форме несимметричного двутавра, удовлетворяющего условию равнопрочности на растяжение и сжатие которое вытекает из требования Идея рациональности поперечного сечения стержней при изгибе реализована в стандартных тонкостенных профилях, получаемых методами горячего прессования или прокатки из рядовых и легированных конструкционных высококачественных сталей, а также алюминия и алюминиевых сплавов. а-двутавр, б- швеллер, в - неравнобокий уголок, холодногнутые замкнутые г-равнобокий уголок. сварные профили

Для консольной балки, нагруженной распределенной нагрузкой интенсивностью кН/м и сосредоточенным моментом кН·м (рис. 3.12), требуется: построить эпюры перерезывающих сил и изгибающих моментов , подобрать балку круглого поперечного сечения при допускаемом нормальном напряжении кН/см2 и проверить прочность балки по касательным напряжениям при допускаемом касательном напряжении кН/см2. Размеры балки м; м; м.

Расчетная схема для задачи на прямой поперечный изгиб

Рис. 3.12

Решение задачи "прямой поперечный изгиб"

Определяем опорные реакции

Горизонтальная реакция в заделке равна нулю, поскольку внешние нагрузки в направлении оси z на балку не действуют.

Выбираем направления остальных реактивных усилий, возникающих в заделке: вертикальную реакцию направим, например, вниз, а момент – по ходу часовой стрелки. Их значения определяем из уравнений статики:

Составляя эти уравнения, считаем момент положительным при вращении против хода часовой стрелки, а проекцию силы положительной, если ее направление совпадает с положительным направлением оси y.

Из первого уравнения находим момент в заделке :

Из второго уравнения – вертикальную реакцию :

Полученные нами положительные значения для момента и вертикальной реакции в заделке свидетельствуют о том, что мы угадали их направления.

В соответствии с характером закрепления и нагружения балки, разбиваем ее длину на два участка. По границам каждого из этих участков наметим четыре поперечных сечения (см. рис. 3.12), в которых мы и будем методом сечений (РОЗУ) вычислять значения перерезывающих сил и изгибающих моментов.

Сечение 1. Отбросим мысленно правую часть балки. Заменим ее действие на оставшуюся левую часть перерезывающей силой и изгибающим моментом . Для удобства вычисления их значений закроем отброшенную нами правую часть балки листком бумаги, совмещая левый край листка с рассматриваемым сечением.

Напомним, что перерезывающая сила, возникающая в любом поперечном сечении, должна уравновесить все внешние силы (активные и реактивные), которые действуют на рассматриваемую (то есть видимую) нами часть балки. Поэтому перерезывающая сила должна быть равна алгебраической сумме всех сил, которые мы видим.

Приведем и правило знаков для перерезывающей силы: внешняя сила, действующая на рассматриваемую часть балки и стремящаяся «повернуть» эту часть относительно сечения по ходу часовой стрелки, вызывает в сечении положительную перерезывающую силу. Такая внешняя сила входит в алгебраическую сумму для определения со знаком «плюс».

В нашем случае мы видим только реакцию опоры , которая вращает видимую нами часть балки относительно первого сечения (относительно края листка бумаги) против хода часовой стрелки. Поэтому

кН.

Изгибающий момент в любом сечении должен уравновесить момент, создаваемый видимыми нами внешними усилиями, относительно рассматриваемого сечения. Следовательно, он равен алгебраической сумме моментов всех усилий, которые действуют на рассматриваемую нами часть балки, относительно рассматриваемого сечения (иными словами, относительно края листка бумаги). При этом внешняя нагрузка, изгибающая рассматриваемую часть балки выпуклостью вниз, вызывает в сечении положительный изгибающий момент. И момент, создаваемый такой нагрузкой, входит в алгебраическую сумму для определения со знаком «плюс».

Мы видим два усилия: реакцию и момент в заделке . Однако у силы плечо относительно сечения 1 равно нулю. Поэтому

кН·м.

Знак «плюс» нами взят потому, что реактивный момент изгибает видимую нами часть балки выпуклостью вниз.

Сечение 2. По-прежнему будем закрывать листком бумаги всю правую часть балки. Теперь, в отличие от первого сечения, у силы появилось плечо: м. Поэтому

кН; кН·м.

Сечение 3. Закрывая правую часть балки, найдем

кН;

Сечение 4. Закроем листком левую часть балки. Тогда

кН·м.

кН·м.

.

По найденным значениям строим эпюры перерезывающих сил (рис. 3.12, б) и изгибающих моментов (рис. 3.12, в).

Под незагруженными участками эпюра перерезывающих сил идет параллельно оси балки, а под распределенной нагрузкой q – по наклонной прямой вверх. Под опорной реакцией на эпюре имеется скачок вниз на величину этой реакции, то есть на 40 кН.

На эпюре изгибающих моментов мы видим излом под опорной реакцией . Угол излома направлен навстречу реакции опоры. Под распределенной нагрузкой q эпюра изменяется по квадратичной параболе, выпуклость которой направлена навстречу нагрузке. В сечении 6 на эпюре – экстремум, поскольку эпюра перерезывающей силы в этом месте проходит здесь через нулевое значение.

Определяем требуемый диаметр поперечного сечения балки

Условие прочности по нормальным напряжениям имеет вид:

,

где – момент сопротивления балки при изгибе. Для балки круглого поперечного сечения он равен:

.

Наибольший по абсолютному значению изгибающий момент возникает в третьем сечении балки: кН·см.

Тогда требуемый диаметр балки определяется по формуле

см.

Принимаем мм. Тогда

кН/см2 кН/см2.

«Перенапряжение» составляет

,

что допускается.

Проверяем прочность балки по наибольшим касательным напряжениям

Наибольшие касательные напряжения, возникающие в поперечном сечении балки круглого сечения, вычисляются по формуле

,

где – площадь поперечного сечения.

Согласно эпюре , наибольшее по алгебраической величине значение перерезывающей силы равно кН. Тогда

кН/см2 кН/см2,

то есть условие прочности и по касательным напряжениям выполняется, причем, с большим запасом.

Пример решения задачи "прямой поперечный изгиб" №2

Условие примера задачи на прямой поперечный изгиб

Для шарнирно опертой балки, нагруженной распределенной нагрузкой интенсивностью кН/м, сосредоточенной силой кН и сосредоточенным моментом кН·м (рис. 3.13), требуется построить эпюры перерезывающих сил и изгибающих моментов и подобрать балку двутаврового поперечного сечения при допускаемом нормальном напряжении кН/см2 и допускаемом касательном напряжении кН/см2. Пролет балки м.

Пример задачи на прямой изгиб – расчетная схема


Рис. 3.13

Решение примера задачи на прямой изгиб

Определяем опорные реакции

Для заданной шарнирно опертой балки необходимо найти три опорные реакции: , и . Поскольку на балку действуют только вертикальные нагрузки, перпендикулярные к ее оси, горизонтальная реакция неподвижной шарнирной опоры A равна нулю: .

Направления вертикальных реакций и выбираем произвольно. Направим, например, обе вертикальные реакции вверх. Для вычисления их значений составим два уравнения статики:

Напомним, что равнодействующая погонной нагрузки , равномерно распределенной на участке длиной l, равна , то есть равна площади эпюры этой нагрузки и приложена она в центре тяжести этой эпюры, то есть посредине длины.

;

кН.

Делаем проверку: .

Напомним, что силы, направление которых совпадает с положительным направлением оси y, проектируются (проецируются) на эту ось со знаком плюс:

то есть верно.

Строим эпюры перерезывающих сил и изгибающих моментов

Разбиваем длину балки на отдельные участки. Границами этих участков являются точки приложения сосредоточенных усилий (активных и/или реактивных), а также точки, соответствующие началу и окончанию действия распределенной нагрузки. Таких участков в нашей задаче получается три. По границам этих участков наметим шесть поперечных сечений, в которых мы и будем вычислять значения перерезывающих сил и изгибающих моментов (рис. 3.13, а).

Сечение 1. Отбросим мысленно правую часть балки. Для удобства вычисления перерезывающей силы и изгибающего момента , возникающих в этом сечении, закроем отброшенную нами часть балки листком бумаги, совмещая левый край листка бумаги с самим сечением.

Перерезывающая сила в сечении балки равна алгебраической сумме всех внешних сил (активных и реактивных), которые мы видим. В данном случае мы видим реакцию опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Равнодействующая погонной нагрузки равна нулю. Поэтому

кН.

Знак «плюс» взят потому, что сила вращает видимую нами часть балки относительно первого сечения (края листка бумаги) по ходу часовой стрелки.

Изгибающий момент в сечении балки равен алгебраической сумме моментов всех усилий, которые мы видим, относительно рассматриваемого сечения (то есть относительно края листка бумаги). Мы видим реакцию опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Однако у силы плечо равно нулю. Равнодействующая погонной нагрузки также равна нулю. Поэтому

Сечение 2. По-прежнему будем закрывать листком бумаги всю правую часть балки. Теперь мы видим реакцию и нагрузку q, действующую на участке длиной . Равнодействующая погонной нагрузки равна . Она приложена посредине участка длиной . Поэтому

Напомним, что при определении знака изгибающего момента мы мысленно освобождаем видимую нами часть балки от всех фактических опорных закреплений и представляем ее как бы защемленной в рассматриваемом сечении (то есть левый край листка бумаги нами мысленно представляется жесткой заделкой).

Сечение 3. Закроем правую часть. Получим

Сечение 4. Закрываем листком правую часть балки. Тогда

Теперь, для контроля правильности вычислений, закроем листком бумаги левую часть балки. Мы видим сосредоточенную силу P, реакцию правой опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Равнодействующая погонной нагрузки равна нулю. Поэтому

кН·м.

То есть все верно.

Сечение 5. По-прежнему закроем левую часть балки. Будем иметь

кН;

кН·м.

Сечение 6. Опять закроем левую часть балки. Получим

кН;

По найденным значениям строим эпюры перерезывающих сил (рис. 3.13, б) и изгибающих моментов (рис. 3.13, в).

Убеждаемся в том, что под незагруженным участком эпюра перерезывающих сил идет параллельно оси балки, а под распределенной нагрузкой q – по прямой, имеющей наклон вниз. На эпюре имеется три скачка: под реакцией – вверх на 37,5 кН, под реакцией – вверх на 132,5 кН и под силой P – вниз на 50 кН.

На эпюре изгибающих моментов мы видим изломы под сосредоточенной силой P и под опорными реакциями. Углы изломов направлены навстречу этим силам. Под распределенной нагрузкой интенсивностью q эпюра изменяется по квадратичной параболе, выпуклость которой направлена навстречу нагрузке. Под сосредоточенным моментом – скачок на 60 кН ·м, то есть на величину самого момента. В сечении 7 на эпюре – экстремум, поскольку эпюра перерезывающей силы для этого сечения проходит через нулевое значение (). Определим расстояние от сечения 7 до левой опоры.

Изгибом называется вид нагружения бруса, при котором к нему прикладывается момент, лежащий в плоскости проходящей через продольную ось. В поперечных сечениях бруса возникают изгибающие моменты. При изгибе возникают деформация, при которой происходит искривление оси прямого бруса или изменение кривизны кривого бруса.

Брус, работающий при изгибе, называется балкой . Конструкция, состоящая из нескольких изгибаемых стержней, соединенных между собой чаще всего под углом 90°, называется рамой .

Изгиб называется плоским или прямым , если плоскость действия нагрузки проходит через главную центральную ось инерции сечения (рис.6.1).

Рис.6.1

При плоском поперечном изгибе в балке возникают два вида внутренних усилий: поперечная сила Q и изгибающий момент M . В раме при плоском поперечном изгибе возникают три усилия: продольная N , поперечная Q силы и изгибающий момент M .

Если изгибающий момент является единственным внутренним силовым фактором, то такой изгиб называетсячистым (рис.6.2). При наличии поперечной силы изгиб называется поперечным . Строго говоря, к простым видам сопротивления относится лишь чистый изгиб; попереч­ный изгиб относят к простым видам сопротивления условно, так как в большинстве слу­чаев (для достаточно длинных балок) действием поперечной силы при расчетах на проч­ность можно пренебречь.

22.Плоский поперечный изгиб. Дифференциальные зависимости между внутренними усилиями и внешней нагрузкой. Между изгибающим моментом, поперечной силой и интенсивностью распределенной нагрузки существуют дифференциальные зависимости, основанные на теореме Журавского, названной по имени русского инженера-мостостроителя Д. И. Журавского (1821-1891 г.г.).

Эта теорема формулируется так:

Поперечная сила равна первой производной от изгибающего момента по абсциссе сечения балки.

23. Плоский поперечный изгиб. Посторение эпюр поперечных сил и изгибающих моментов. Определение поперечных сил и изгибающих моментов - сечение 1

Отбросим правую часть балки и заменим ее действие на левую часть поперечной силой и изгибающим моментом. Для удобства вычисления закроем отбрасываемую правую часть балки листком бумаги, совмещая левый край листка с рассматриваемым сечением 1.

Поперечная сила в сечении 1 балки равна алгебраической сумме всех внешних сил, которые видим после закрытия

Видим только реакцию опоры, направленную вниз. Таким образом, поперечная сила равна:

кН.

Знак «минус» нами взят потому, что сила вращает видимую нами часть балки относительно первого сечения против хода часовой стрелки (или потому, что одинаково направлена с направлением поперечной силы по правилу знаков)

Изгибающий момент в сечении 1 балки, равен алгебраической сумме моментов всех усилий, которые мы видим после закрытия отброшенной части балки, относительно рассматриваемого сечения 1.

Видим два усилия: реакцию опоры и момент M. Однако у силыплечо практически равно нулю. Поэтомуизгибающий момент равен:

кН·м.

Здесь знак «плюс» нами взят потому, что внешний момент M изгибает видимую нами часть балки выпуклостью вниз. (или потому, что противоположно направлен направлению изгибающего момента по правилу знаков)

Определение поперечных сил и изгибающих моментов - сечение 2

В отличие от первого сечения, у силы реакциипоявилось плечо, равное а.

поперечная сила:

кН;

изгибающий момент:

Определение поперечных сил и изгибающих моментов - сечение 3

поперечная сила:

изгибающий момент:

Определение поперечных сил и изгибающих моментов - сечение 4

Теперь удобнее закрывать листком левую часть балки .

поперечная сила:

изгибающий момент:

Определение поперечных сил и изгибающих моментов - сечение 5

поперечная сила:

изгибающий момент:

Определение поперечных сил и изгибающих моментов - сечение 1

поперечная сила и изгибающий момент:

.

По найденным значениям производим построение эпюры поперечных сил (рис. 7.7, б) и изгибающих моментов(рис. 7.7, в).

КОНТРОЛЬ ПРАВИЛЬНОСТИ ПОСТРОЕНИЯ ЭПЮР

Убедимся в правильности построения эпюр по внешним признакам, пользуясь правилами построения эпюр.

Проверка эпюры поперечных сил

Убеждаемся: под незагруженными участками эпюра поперечных сил идет параллельно оси балки, а под распределенной нагрузкой q – по наклоненной вниз прямой. На эпюре продольной силы три скачка: под реакцией– вниз на 15 кН, под силой P – вниз на 20 кН и под реакцией– вверх на 75 кН.

Проверка эпюры изгибающих моментов

На эпюре изгибающих моментов видим изломы под сосредоточенной силой P и под опорными реакциями. Углы изломов направлены навстречу этим силам. Под распределенной нагрузкой q эпюра изгибающих моментов изменяется по квадратичной параболе, выпуклость которой направлена навстречу нагрузке. В сечении 6 на эпюре изгибающего момента – экстремум, поскольку эпюра поперечной силы в этом месте проходит через нулевое значение.