Математическая модель в среде математического. Различные пути построения математической модели

Четыре седьмых класса.

В 7А учатся 15 девочек и 13 мальчиков,

в 7Б - 12 девочек и 12 мальчиков,

в 7В - 9 девочек и 18 мальчиков,

в 7Г - 20 девочек и 10 мальчиков.

Если нам нужно ответить на вопрос, сколько учеников в каждом из седьмых классов, то нам 4 раза придется осуществлять одну и ту же операцию сложения:

в 7А 15 + 13 = 28 учеников;
в 7Б 12 +12 = 24 ученика;
в 7В 9 + 18 = 27 учеников;
в 7Г 20 + 10 = 30 учеников.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Для построения математической модели необходимо:

  1. тщательно проанализировать реальный объект или процесс;
  2. выделить его наиболее существенные черты и свойства;
  3. определить переменные, т.е. параметры, значения которых влияют на основные черты и свойства объекта;
  4. описать зависимость основных свойств объекта, процесса или системы от значения переменных с помощью логико-математических соотношений (уравнения, равенства, неравенства, логико-математические конструкций);
  5. выделить внутренние связи объекта, процесса или системы с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций;
  6. определить внешние связи и описать их с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций.

Математическое моделирование, кроме исследования объекта, процесса или системы и составления их математического описания, также включает:

  1. построение алгоритма, моделирующего поведение объекта, процесса или системы;
  2. проверка адекватности модели и объекта, процесса или системы на основе вычислительного и натурного эксперимента;
  3. корректировка модели;
  4. использование модели.

Математическое описание исследуемых процессов и систем зависит от:

  1. природы реального процесса или системы и составляется на основе законов физики, химии, механики, термодинамики, гидродинамики, электротехники, теории пластичности, теории упругости и т.д.
  2. требуемой достоверности и точности изучения и исследования реальных процессов и систем.

Построение математической модели обычно начинается с построения и анализа простейшей, наиболее грубой математической модели рассматриваемого объекта, процесса или системы. В дальнейшем, в случае необходимости, модель уточняется, делается ее соответствие объекту более полным.

Возьмем простой пример. Нужно определить площадь поверхности письменного стола. Обычно для этого измеряют его длину и ширину, а затем перемножают полученные числа. Такая элементарная процедура фактически обозначает следующее: реальный объект (поверхность стола) заменяется абстрактной математической моделью – прямоугольником. Прямоугольнику приписываются размеры, полученные в результате измерения длины и ширины поверхности стола, и площадь такого прямоугольника приближенно принимается за искомую площадь стола. Однако модель прямоугольника для письменного стола – это простейшая, наиболее грубая модель. При более серьезном подходе к задаче прежде, чем воспользоваться для определения площади стола моделью прямоугольника, эту модель нужно проверить. Проверки можно осуществить следующим образом: измерить длины противоположных сторон стола, а также длины его диагоналей и сравнить их между собой. Если, с требуемой степенью точности, длины противоположных сторон и длины диагоналей попарно равны между собой, то поверхность стола действительно можно рассматривать как прямоугольник. В противном случае модель прямоугольника придется отвергнуть и заменить моделью четырехугольника общего вида. При более высоком требовании к точности может возникнуть необходимость пойти в уточнении модели еще дальше, например, учесть закругления углов стола.

С помощью этого простого примера было показано, что математическая модель не определяется однозначно исследуемым объектом, процессом или системой .

ИЛИ (надо завтра уточнить)

Пути решения мат. Модели:

1, Построение м. на основе законов природы (аналитич. Метод)

2. Формальный путь с помощью статистическ. Обработки и результатов измерения (статист. Подход)

3. Построение м. на основе модели элементов (сложных систем)

1, Аналитический – использование при достаточном изуч. Общей закономерности изв. Моделей.

2. эксперимент. При отсутствии информ.

3. Имитационная м. – исследует св-ва объекта сст. В целом.


Пример построения математической модели.

Математи́ческая моде́ль - это математическое представление реальности.

Математическое моделирование - это процесс построения и изучения математических моделей.

Все естественные и общественные науки, использующие математический аппарат, по сути занимаются математическим моделированием: заменяют объект его математической моделью и затем изучают последнюю. Связь математической модели с реальностью осуществляется с помощью цепочки гипотез, идеализаций и упрощений. С помощью математических методов описывается, как правило, идеальный объект, построенный на этапе содержательного моделирования.

Зачем нужны модели?

Очень часто при исследовании какого либо объекта возникают трудности. Сам оригинал порой бывает недоступен, или его использование не целесообразно, или привлечение оригинала требует больших затрат. Все эти проблемы можно решить с помощью моделирования. Модель в определенном смысле может заменить исследуемый объект.

Простейшие примеры моделей

§ Фотографию можно назвать моделью человека. Для того чтобы узнать человека, достаточно видеть его фотографию.

§ Архитектор создал макет нового жилого района. Он может движением руки переместить высотное здание из одной части в другую. В реальности это было бы не возможно.

Типы моделей

Модели можно разделить на материальные" и идеальные . выше приведенные примеры являются материальными моделями. Идеальные модели часто имеют знаковую форму. Реальные понятия заменяются при этом некоторыми знаками, котое можно легко зафиксировать на бумаге, в памяти компьютера и т.д.

Математическое моделирование

Математическое моделирование относится к классу знакового моделирования. При этом модели могу создаваться из любых математических объектов: чисел, функций, уравнений и т.д.

Построение математической модели

§ Можно отметить несколько этапов построения математической модели:

1. Осмысление задачи, выделение наиболе важных для нас качеств, свойств, велечин и параметров.

2. Введение обозначений.

3. Составление системы ограничений, которым должны удовлетворять введенные величины.

4. Формулировка и запись условий,которым должно удовлетворять искомое оптимальное решение.

Процесс моделирования не заканчивается составлением модели,а только имначинается. Составив модель, выбирают метод нахождения ответа, решают задачу. после того как ответ найден сопостовляют его с реальностью. И возможно что ответ не удовлетворяет, в этом случае модель видоизменяют или даже выбирают совсем другую модель.

Пример математической модели

Задача

Производственное объединение, в которое входят две мебельные фабрики, нуждается в обновлении парка станков. Причем первой мебельной фабрике нужно заменить три станка, а второй-семь. Заказы можно разместить на двух станкостроительных заводах. Первый завод может изготовить не более 6 станков, а второй завод примет заказ если их будет не мение трех. Требуется определить как размещать заказы.

вектор входных переменных, X= t ,

Y - вектор выходных переменных, Y= t ,

Z - вектор внешних воздействий, Z= t ,

t - координата времени.

Построение математической модели заключается в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно и качественно связь между теми или иными процессами и явлениями, между интересующими специалиста физическими величинами, и факторами, влияющими на конечный результат.

Обычно их оказывается настолько много, что ввести в модель всю их совокупность не удается. При построении математической модели перед исследованием возникает задача выявить и исключить из рассмотрения факторы, несущественно влияющие на конечный результат (математическая модель обычно включает значительно меньшее число факторов, чем в реальной действительности). На основе данных эксперимента выдвигаются гипотезы о связи между величинами, выражающими конечный результат, и факторами, введенными в математическую модель . Такая связь зачастую выражается системами дифференциальных уравнений в частных производных (например, в задачах механики твердого тела, жидкости и газа, теории фильтрации, теплопроводности, теории электростатического и электродинамического полей).

Конечной целью этого этапа является формулирование математической задачи, решение которой с необходимой точностью выражает результаты, интересующие специалиста.

Форма и принципы представления математической модели зависит от многих факторов.

По принципам построения математические модели разделяют на:

  1. аналитические;
  2. имитационные.

В аналитических моделях процессы функционирования реальных объектов, процессов или систем записываются в виде явных функциональных зависимостей .

Аналитическая модель разделяется на типы в зависимости от математической проблемы:

  1. уравнения (алгебраические, трансцендентные, дифференциальные, интегральные),
  2. аппроксимационные задачи ( интерполяция , экстраполяция, численное интегрирование и дифференцирование ),
  3. задачи оптимизации,
  4. стохастические проблемы.

Однако по мере усложнения объекта моделирования построение аналитической модели превращается в трудноразрешимую проблему. Тогда исследователь вынужден использовать имитационное моделирование .

В имитационном моделировании функционирование объектов, процессов или систем описывается набором алгоритмов. Алгоритмы имитируют реальные элементарные явления, составляющие процесс или систему с сохранением их логической структуры и последовательности протекания во времени. Имитационное моделирование позволяет по исходным данным получить сведения о состояниях процесса или системы в определенные моменты времени, однако прогнозирование поведения объектов, процессов или систем здесь затруднительно. Можно сказать, что имитационные модели - это проводимые на ЭВМ вычислительные эксперименты с математическими моделями , имитирующими поведение реальных объектов, процессов или систем.

В зависимости от характера исследуемых реальных процессов и систем математические модели могут быть:

  1. детерминированные,
  2. стохастические.

В детерминированных моделях предполагается отсутствие всяких случайных воздействий, элементы модели (переменные, математические связи) достаточно точно установленные, поведение системы можно точно определить. При построении детерминированных моделей чаще всего используются алгебраические уравнения, интегральные уравнения, матричная алгебра .

Стохастическая модель учитывает случайный характер процессов в исследуемых объектах и системах, который описывается методами теории вероятности и математической статистики.

По виду входной информации модели разделяются на:

  1. непрерывные,
  2. дискретные.

Если информация и параметры являются непрерывными, а математические связи устойчивы, то модель - непрерывная. И наоборот, если информация и параметры - дискретны, а связи неустойчивы, то и математическая модель - дискретная.

По поведению моделей во времени они разделяются на:

  1. статические,
  2. динамические.

Статические модели описывают поведение объекта, процесса или системы в какой-либо момент времени. Динамические модели отражают поведение объекта, процесса или системы во времени.

По степени соответствия между

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ - представление изучаемого в конкретно-научном знании явления или процесса на языке математических понятий. При этом ряд свойств исследуемого явления предполагается получить на пути исследования собственно математических характеристик модели. Построение М.м. чаще всего диктуется необходимостью иметь количественный анализ изучаемых явлений и процессов, без которого, в свою очередь, невозможно делать проверяемые на опыте предсказания об их протекании.

Процесс математического моделирования, как правило, проходит следующие этапы. На первом этапе происходит выявление связей между основными параметрами будущей М.м. Речь идет прежде всего о качественном анализе исследуемых явлений и формулировании закономерностей, связывающих основные объекты исследования. На этой основе проводится выявление объектов, допускающих количественное описание. Этап завершается построением гипотетической модели, другими словами, записью на языке математических понятий качественных представлений о взаимосвязях между основными объектами модели, которые могут быть количественно охарактеризованы.

На втором этапе происходит исследование собственно математических задач, к которым приводит построенная гипотетическая модель. Главное на данном этапе - получить в результате математического анализа модели эмпирически проверяемые теоретические следствия (решение прямой задачи). При этом нередки случаи, когда для построения и исследования М.м. в различных областях конкретно-научного знания применяется один и тот же математический аппарат (например, дифференциальные уравнения) и возникают однотипные, хотя и весьма нетривиальные в каждом конкретном случае, математические проблемы. Кроме того, на этом этапе огромное значение приобретает использование быстродействующей вычислительной техники (ЭВМ), которая дает возможность получить приближенное решение задач, часто невозможное в рамках чистой математики, с недоступной ранее (без применения ЭВМ) степенью точности.

Для третьего этапа характерна деятельность по выявлению степени адекватности построенной гипотетической М.м. тем явлениям и процессам, для исследования которых она была предназначена. А именно, в том случае, если все параметры модели были заданы, исследователи пытаются выяснить, насколько, в пределах точности наблюдений, их результаты согласуются с теоретическими следствиями модели. Отклонения, выходящие за пределы точности наблюдений, свидетельствуют о неадекватности модели. Однако нередки случаи, когда при построении модели ряд ее параметров остается

неопределенным. Задачи, в которых устанавливаются параметрические характеристики модели таким образом, чтобы теоретические следствия были сопоставимы в пределах точности наблюдений с результатами эмпирических проверок, называют обратными задачами.

На четвертом этапе с учетом выявления степени адекватности построенной гипотетической модели и появления новых экспериментальных данных об изучаемых явлениях происходит последующий анализ и модификация модели. Здесь принимаемое решение варьируется от безусловного отказа от применяемых математических средств до принятия построенной модели в качества фундамента для построения принципиально новой научной теории.

Первые М.м. появились еще в античной науке. Так, для моделирования Солнечной системы греческий математик и астроном Евдокс придал каждой планете четыре сферы, комбинация движения которых создавала гиппопеду - математическую кривую, сходную с наблюдаемым движением планеты. Поскольку, однако, эта модель не могла объяснить все наблюдаемые аномалии в движении планет, позже она была заменена эпициклической моделью Апполония из Перги. Последнюю модель использовал в своих исследованиях Гиппарх, а затем, подвергнув ее некоторой модификации, и Птолемей. Эта модель, как и ее предшественницы, основывалась на убеждении, что планеты совершают равномерные круговые движения, наложение которых и объясняло видимые нерегулярности. При этом следует отметить, что модель Коперника была принципиально новой лишь в качественном смысле (но не как М.м.). И лишь Кеплер, основываясь на наблюдениях Тихо Браге, построил новую М.м. Солнечной системы, доказав, что планеты движутся не по круговым, а по эллиптическим орбитам.

В настоящее время наиболее адекватными признаются М.м., построенные для описания механических и физических явлений. Об адекватности М.м. за пределами физики можно, за некоторыми исключениями, говорить с изрядной долей осторожности. Тем не менее, фиксируя гипотетичность, а часто и просто неадекватность М.м. в различных областях знания, не следует недооценивать их роль в развитии науки. Нередки случаи, когда даже далекие от адекватности модели в значительной мере организовывали и стимулировали дальнейшие исследования, наряду с ошибочными выводами содержавшими и те зерна истины, которые вполне оправдывали усилия, затраченные на разработку этих моделей.

Литература:

Математическое моделирование. М., 1979;

Рузавин Г.И. Математизация научного знания. М., 1984;

Тутубалин В.Н., Барабашева Ю.М., Григорян А.А., Девяткова Г.Н.,Угер Е. Г. Дифференциальные уравнения в экологии: историко-методологическое размышление // Вопросы истории естествознания и техники. 1997. №3.

Словарь философских терминов. Научная редакция профессора В.Г. Кузнецова. М., ИНФРА-М, 2007, с. 310-311.

Виды математических моделей

В зависимости от того, какими средствами, при каких условиях и по отношению к каким объектам познания реализуется способность моде­лей отображать действительность, возникает их большое разнообразие, а вместе с ним - классификации. Путем обобщения существующих клас­сификаций выделим базовые модели по применяемому математическому аппарату, на основе которых получают раз­витие специальные модели (рисунок 8.1).

Рисунок 8.1 - Формальная классификация моделей

Математические модели отображают изучаемые объекты (процессы, системы) в виде явных функциональных соотношений: алгебраических равенств и неравенств, интегральных и дифферен­циальных, конечно-разностных и других математических выражений (закон распределения случайной величины, регрессионные модели и т.д.), а также отношений математической логики.

В зависимости от двух фундаментальных признаков построения математической модели - вида описания причинно-следственных связей и изменений их во вре­мени - различают детерминистические и стохастические, статические и динамические модели (рисунок 8.2).

Цель схемы, представленной на рисунке, - отобразить следующие особенности:

1) математические модели могут быть и детерминистическими, и стохастическими;

2) детерминистические и стохастические модели могут быть и статическими, и динамическими.

Математическая модель называется детерминистической (детерминированной) , если все ее параметры и переменные являются однозначно определяемыми ве­личинами, а также выполняется условие полной определенности ин формации. В противном случае, в условиях неопределенности инфор­мации, когда параметры и переменные модели - случайные величи­ны, модель называется стохастической (вероятностной) .

Рисунок 8.2 – Классы математических моделей

Модель называется динами­ческой , если как минимум одна переменная изменяется по периодам времени, и статической , если принимается гипотеза, что переменные не изменяются по периодам времени.

В простейшем случае балансовые модели выступают в виде уравнения баланса, где в левой части располагается сумма каких-либо поступлений, а в правой - расходная часть также в виде суммы. Например, в таком виде представляется годовой бюджет организации.

На основе статистических данных могут строиться не только балан­совые, но и корреляционно-регрессионные модели.

Если функция Y зависит не только от переменных х 1 , х 2 , … х n , но и от других факторов, связь между Y и х 1 , х 2 , … х n является неточной или корреляционной в отличие от точной или функциональной связи. Корреляционными, например, в большинстве случаев являются связи, наблюда­ющиеся между выходными параметрами ОПС и факторами ее внутренней и внешней среды (см. тему 5).

Корреляционно-регрессионные модели получают при исследовании влияния целого комплекса факторов на величину того или иного признака путем примене­ния статистического аппарата. При этом ставится задача не только установить корреляционную связь, но и выразить эту связь аналитически, то есть подобрать уравнения, описываю­щие данную корреляционную зависимость (уравнение регрессии).

Для нахождения численного значения параметров уравне­ния регрессии пользуются методом наименьших квадратов. Суть этого метода состоит в том, чтобы выбрать такую линию, при которой сумма квадратов отклонений от нее ординат Y отдель­ных точек была бы наименьшей.

Корреляционно-регрессионные модели часто используются при исследовании явлений, когда возникает необходимость установить зависимость между соответствующими характеристиками в двух и более рядах. При этом преимущественно используется парная и множественная линейная регрессия вида

y = a 1 x 1 + a 2 x 2 + … + a n x n + b .

В результате применения метода наименьших квадратов ус­танавливаются значения параметров a или a 1 , a 2 , …, a n и b, а затем выполняются оценки точности аппроксимации и значимости полученного уравнения регрессии.

В особую группу выделяют графоаналитиче­ские модели . Они используют различные графические изображения и поэтому обладают хорошей наглядностью.

Теория графов - одна из теорий дискретной математики, изучает графы, под которыми понимается совокупность точек и линий их соединяющих. Граф - это самостоятельный математи­ческий объект (впервые ввел Кёниг Д.). На основе теории гра­фов наиболее часто строят древовидные и сетевые модели.

Древовидная модель (дерево) - это неориентированный связ­ный граф, не содержащий петель и циклов. Примером такой модели является дерево целей.

Сетевые модели нашли широкое применение в управлении производством работ. Сетевые модели (графики) отражают последовательность выполнения работ и продолжи­тельность каждой работы (рисунок 8.3).

Рисунок 8.3 - Сетевая модель производства работ

Каждая линия сетевого графика - это некоторая работа. Цифра рядом с ней означает продолжительность ее выполнения.

Сетевые модели позволяют найти так называемый критический путь и оптимизировать график производства работ по времени при ограничениях на другие ресурсы.

Сетевые модели могут быть детерминированными и стоха­стическими. В последнем случае продолжительности выполнения работ задаются законами распределения случайных величин.

Оптимизационные модели служат для определения оптимальной траектории достижения системой поставленной цели при наложении некоторых ограничений на управление ее поведениям и движением. В этом случае оптимизационные модели описывают различного рода задачи нахождения экстремума некоторой целевой функции (критерия оптимизации).

Для выявления оптимального способа достижения цели управления в условиях ограниченных ресурсов – технических, материальных, трудовых и финансовых – применяют методы исследования операций. К ним относятся методы математическо­го программирования (линейное и нелинейное, целочисленное, ди­намическое и стохастическое программирование), аналитические и вероятностно-статистические методы, сетевые методы, методы тео­рии массового обслуживания, теории игр (теории конфликтных си­туаций) и др.

Оптимизационные модели применяются для объемного и календар­ного планирования, управления запасами, распределения ресурсов и работ, замены, параметризации и стандартизации оборудования, рас­пределения потоков товарных поставок на транспортной сети и дру­гих задач управления.



Одним из основных достижений теории исследования операций считается типизация моделей управления и методов решения задач. Например, для решения транспортной задачи, в зависимости от ее раз­мерности, разработаны типовые методы - метод Фогеля, метод по­тенциалов, симплекс-метод. Также при решении задачи управления запасами, в зависимости от ее постановки, могут использоваться ана­литические и вероятностно-статистические методы, методы динами­ческого и стохастического программирования.

В управлении особое значение придается сетевым методам плани­рования. Эти методы позволили найти новый и весьма удобный язык для описания, моделирования и анализа сложных многоэтапных работ и проектов. В исследовании операций значительное место отво­дится совершенствованию управления сложными системами с при­менением методов теории массового обслуживания (см. раздел8.3) и аппарата марков­ских процессов.

Модели марковских случайных процессов - система дифференци­альных уравнений, описывающих функционирование системы или ее процессов в виде множества упорядоченных состояний на некоторой траектории поведения системы. Этот класс моделей широко исполь­зуется при математическом моделировании функционирования слож­ных систем.

Модели теории игр служат для выбора оптимальной стратегии в ус­ловиях ограниченной случайной информации или полной неопреде­ленности.

Игра - математическая модель реальной конфликтной си­туации, разрешение которой ведется по определенным правилам, алгоритмам, описывающим некоторую стратегию поведения лица, принимающего решение в условиях неопределенности.

Различают «игры с природой» и «игры с противником». Исходя из ситуации опре­деляются методы и критерии оценки принятия решений. Так, при «играх с природой» применяют критерии: Лапласа, максиминный (кри­терий Вальда) и минимаксный, Гурвица и Сэвиджа и ряд других алго­ритмических правил. При «играх с противником» для принятия реше­ний используются платежные матрицы, максиминный и минимаксный критерии, а также специальные математические преобразования в свя­зи с тем, что лицу, принимающему решение, противостоит недобро­желательный противник.

Рассмотренные типы математических моделей не охватыва­ют всего их возможного многообразия, а лишь характеризуют отдельные виды в зависимости от принятого аспекта классифи­кации. В.А.Кардашем была предпринята попытка создания сис­темы классификации моделей по четырем аспектам детализации (рисунок 8.4).

А - модели без пространственной дифференциации параметров;

В - модели с пространственной дифференци­ацией параметров

Рисунок 8.4 - Классификация моделей по четырем аспектам детализации

С развитием вычислительных средств одним из распространенных методов принятия решений выступает деловая игра, представляющая собой численный эксперимент с активным участием человека. Существуют сотни деловых игр. Они применяются для изу­чения целого ряда проблем управления, экономики, теории организа­ции, психологии, финансов и торговли.