Среднеквадратическое отклонение исчисляется как корень квадратный из. Оценка дисперсии, среднеквадратичное отклонение

Одним из основных инструментов статистического анализа является расчет среднего квадратичного отклонения. Данный показатель позволяет сделать оценку стандартного отклонения по выборке или по генеральной совокупности. Давайте узнаем, как использовать формулу определения среднеквадратичного отклонения в Excel.

Сразу определим, что же представляет собой среднеквадратичное отклонение и как выглядит его формула. Эта величина является корнем квадратным из среднего арифметического числа квадратов разности всех величин ряда и их среднего арифметического. Существует тождественное наименование данного показателя — стандартное отклонение. Оба названия полностью равнозначны.

Но, естественно, что в Экселе пользователю не приходится это высчитывать, так как за него все делает программа. Давайте узнаем, как посчитать стандартное отклонение в Excel.

Расчет в Excel

Рассчитать указанную величину в Экселе можно с помощью двух специальных функций СТАНДОТКЛОН.В (по выборочной совокупности) и СТАНДОТКЛОН.Г (по генеральной совокупности). Принцип их действия абсолютно одинаков, но вызвать их можно тремя способами, о которых мы поговорим ниже.

Способ 1: мастер функций


Способ 2: вкладка «Формулы»


Способ 3: ручной ввод формулы

Существует также способ, при котором вообще не нужно будет вызывать окно аргументов. Для этого следует ввести формулу вручную.


Как видим, механизм расчета среднеквадратичного отклонения в Excel очень простой. Пользователю нужно только ввести числа из совокупности или ссылки на ячейки, которые их содержат. Все расчеты выполняет сама программа. Намного сложнее осознать, что же собой представляет рассчитываемый показатель и как результаты расчета можно применить на практике. Но постижение этого уже относится больше к сфере статистики, чем к обучению работе с программным обеспечением.

Для расчетов средней геометрической простой используется формула:

Геометрическая взвешенная

Для определения средней геометрической взвешенной применяется формула:

редние диаметры колес, труб, средние стороны квадратов определяются при помощи средней квадратической.

Среднеквадратические величины используются для расчета некоторых показателей, например коэффициент вариации, характеризующего ритмичность выпуска продукции. Здесь определяют среднеквадратическое отклонение от планового выпуска продукции за определенный период по следующей формуле:

Эти величины точно характеризуют изменение экономических показателей по сравнению с их базисной величиной, взятое в его усредненной величине.

Квадратическая простая

Средняя квадратическая простая вычисляется по формуле:

Квадратическая взвешенная

Средняя квадратическая взвешенная равна:

22. Абсолютные показатели вариации включают:

размах вариации

среднее линейное отклонение

дисперсию

среднее квадратическое отклонение

Размах вариации (r)

Размах вариации - это разность между максимальным и минимальным значениями признака

Он показывает пределы, в которых изменяется величина признака в изучаемой совокупности.

Опыт работы у пяти претендентов на предшествующей работе составляет: 2,3,4,7 и 9 лет. Решение: размах вариации = 9 - 2 = 7 лет.

Для обобщенной характеристики различий в значениях признака вычисляют средние показатели вариации, основанные на учете отклонений от средней арифметической. За отклонение от средней принимается разность .

При этом во избежании превращения в нуль суммы отклонений вариантов признака от средней (нулевое свойство средней) приходится либо не учитывать знаки отклонения, то есть брать эту сумму по модулю , либо возводить значения отклонений в квадрат

Среднее линейное и квадратическое отклонение

Среднее линейное отклонение - этосредняя арифметическая из абсолютных отклонений отдельных значений признака от средней.

Среднее линейное отклонение простое:

Опыт работы у пяти претендентов на предшествующей работе составляет: 2,3,4,7 и 9 лет.

В нашем примере: лет;

Ответ: 2,4 года.

Среднее линейное отклонение взвешенное применяется для сгруппированных данных:

Среднее линейное отклонение в силу его условности применяется на практике сравнительно редко (в частности, для характеристики выполнения договорных обязательств по равномерности поставки; в анализе качества продукции с учетом технологических особенностей производства).

Среднее квадратическое отклонение

Наиболее совершенной характеристикой вариации является среднее квадратическое откложение, которое называют стандартом (или стандартным отклонение). Среднее квадратическое отклонение () равно квадратному корню из среднего квадрата отклонений отдельных значений признака отсредней арифметической:

Среднее квадратическое отклонение простое:

Среднее квадратическое отклонение взвешенное применяется для сгруппированных данных:

Между средним квадратическим и средним линейным отклонениями в условиях нормального распределения имеет место следующее соотношение: ~ 1,25.

Среднее квадратическое отклонение, являясь основной абсолютной мерой вариации, используется при определении значений ординат кривой нормального распределения, в расчетах, связанных с организацией выборочного наблюдения и установлением точности выборочных характеристик, а также при оценке границ вариации признака в однородной совокупности.

В данной статье я расскажу о том, как найти среднеквадратическое отклонение . Этот материал крайне важен для полноценного понимания математики, поэтому репетитор по математике должен посвятить его изучению отдельный урок или даже несколько. В этой статье вы найдёте ссылку на подробный и понятный видеоурок, в котором рассказано о том, что такое среднеквадратическое отклонение и как его найти.

Среднеквадратическое отклонение дает возможность оценить разброс значений, полученных в результате измерения какого-то параметра. Обозначается символом (греческая буква «сигма»).

Формула для расчета довольно проста. Чтобы найти среднеквадратическое отклонение, нужно взять квадратный корень из дисперсии. Так что теперь вы должны спросить: “А что же такое дисперсия?”

Что такое дисперсия

Определение дисперсии звучит так. Дисперсия — это среднее арифметическое от квадратов отклонений значений от среднего.

Чтобы найти дисперсию последовательно проведите следующие вычисления:

  • Определите среднее (простое среднее арифметическое ряда значений).
  • Затем от каждого из значений отнимите среднее и возведите полученную разность в квадрат (получили квадрат разности ).
  • Следующим шагом будет вычисление среднего арифметического полученных квадратов разностей (Почему именно квадратов вы сможете узнать ниже).

Рассмотрим на примере. Допустим, вы с друзьями решили измерить рост ваших собак (в миллиметрах). В результате измерений вы получили следующие данные измерений роста (в холке): 600 мм, 470 мм, 170 мм, 430 мм и 300 мм.

Вычислим среднее значение, дисперсию и среднеквадратическое отклонение.

Сперва найдём среднее значение . Как вы уже знаете, для этого нужно сложить все измеренные значения и поделить на количество измерений. Ход вычислений:

Среднее мм.

Итак, среднее (среднеарифметическое) составляет 394 мм.

Теперь нужно определить отклонение роста каждой из собак от среднего :

Наконец, чтобы вычислить дисперсию , каждую из полученных разностей возводим в квадрат, а затем находим среднее арифметическое от полученных результатов:

Дисперсия мм 2 .

Таким образом, дисперсия составляет 21704 мм 2 .

Как найти среднеквадратическое отклонение

Так как же теперь вычислить среднеквадратическое отклонение, зная дисперсию? Как мы помним, взять из нее квадратный корень. То есть среднеквадратическое отклонение равно:

Мм (округлено до ближайшего целого значения в мм).

Применив данный метод, мы выяснили, что некоторые собаки (например, ротвейлеры) – очень большие собаки. Но есть и очень маленькие собаки (например, таксы, только говорить им этого не стоит).

Самое интересное, что среднеквадратическое отклонение несет в себе полезную информацию. Теперь мы можем показать, какие из полученных результатов измерения роста находятся в пределах интервала, который мы получим, если отложим от среднего (в обе стороны от него) среднеквадратическое отклонение.

То есть с помощью среднеквадратического отклонения мы получаем “стандартный” метод, который позволяет узнать, какое из значений является нормальным (среднестатистическим), а какое экстраординарно большим или, наоборот, малым.

Что такое стандартное отклонение

Но… все будет немного иначе, если мы будем анализировать выборку данных. В нашем примере мы рассматривали генеральную совокупность. То есть наши 5 собак были единственными в мире собаками, которые нас интересовали.

Но если данные являются выборкой (значениями, которые выбрали из большой генеральной совокупности), тогда вычисления нужно вести иначе.

Если есть значений, то:

Все остальные расчеты производятся аналогично, в том числе и определение среднего.

Например, если наших пять собак – только выборка из генеральной совокупности собак (всех собак на планете), мы должны делить на 4, а не на 5, а именно:

Дисперсия выборки = мм 2 .

При этом стандартное отклонение по выборке равно мм (округлено до ближайшего целого значения).

Можно сказать, что мы произвели некоторую “коррекцию” в случае, когда наши значения являются всего лишь небольшой выборкой.

Примечание. Почему именно квадраты разностей?

Но почему при вычислении дисперсии мы берём именно квадраты разностей? Допустим при измерении какого-то параметра, вы получили следующий набор значений: 4; 4; -4; -4. Если мы просто сложим абсолютные отклонения от среднего (разности) между собой … отрицательные значения взаимно уничтожатся с положительными:

.

Получается, этот вариант бесполезен. Тогда, может, стоит попробовать абсолютные значения отклонений (то есть модули этих значений)?

На первый взгляд получается неплохо (полученная величина, кстати, называется средним абсолютным отклонением), но не во всех случаях. Попробуем другой пример. Пусть в результате измерения получился следующий набор значений: 7; 1; -6; -2. Тогда среднее абсолютное отклонение равно:

Вот это да! Снова получили результат 4, хотя разности имеют гораздо больший разброс.

А теперь посмотрим, что получится, если возвести разности в квадрат (и взять потом квадратный корень из их суммы).

Для первого примера получится:

.

Для второго примера получится:

Теперь – совсем другое дело! Среднеквадратическое отклонение получается тем большим, чем больший разброс имеют разности … к чему мы и стремились.

Фактически в данном методе использована та же идея, что и при вычислении расстояния между точками, только примененная иным способом.

И с математической точки зрения использование квадратов и квадратных корней дает больше пользы, чем мы могли бы получить на основании абсолютных значений отклонений, благодаря чему среднеквадратическое отклонение применимо и для других математических задач.

О том, как найти среднеквадратическое отклонение, вам рассказал , Сергей Валерьевич

По данным выборочного обследования произведена группировка вкладчиков по размеру вклада в Сбербанке города:

Определите:

1) размах вариации;

2) средний размер вклада;

3) среднее линейное отклонение;

4) дисперсию;

5) среднее квадратическое отклонение;

6) коэффициент вариации вкладов.

Решение:

Данный ряд распределения содержит открытые интервалы. В таких рядах условно принимается величина интервала первой группы равна величине интервала последующей, а величина интервала последней группы равна величине интервала предыдущей.

Величина интервала второй группы равна 200, следовательно, и величина первой группы также равна 200. Величина интервала предпоследней группы равна 200, значит и последний интервал будет иметь величину, равную 200.

1) Определим размах вариации как разность между наибольшим и наименьшим значением признака:

Размах вариации размера вклада равен 1000 рублей.

2) Средний размер вклада определим по формуле средней арифметической взвешенной.

Предварительно определим дискретную величину признака в каждом интервале. Для этого по формуле средней арифметической простой найдём середины интервалов.

Среднее значение первого интервала будет равно:

второго - 500 и т. д.

Занесём результаты вычислений в таблицу:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х xf
200-400 32 300 9600
400-600 56 500 28000
600-800 120 700 84000
800-1000 104 900 93600
1000-1200 88 1100 96800
Итого 400 - 312000

Средний размер вклада в Сбербанке города будет равен 780 рублей:

3) Среднее линейное отклонение есть средняя арифметическая из абсолютных отклонений отдельных значений признака от общей средней:

Порядок расчёта среднего линейонго отклонения в интервальном ряду распределения следующий:

1. Вычисляется средняя арифметическая взвешенная, как показано в п. 2).

2. Определяются абсолютные отклонения вариант от средней:

3. Полученные отклонения умножаются на частоты:

4. Находится сумма взвешенных отклонений без учёта знака:

5. Сумма взвешенных отклонений делится на сумму частот:

Удобно пользоваться таблицей расчётных данных:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х
200-400 32 300 -480 480 15360
400-600 56 500 -280 280 15680
600-800 120 700 -80 80 9600
800-1000 104 900 120 120 12480
1000-1200 88 1100 320 320 28160
Итого 400 - - - 81280

Среднее линейное отклонение размера вклада клиентов Сбербанка составляет 203,2 рубля.

4) Дисперсия - это средняя арифметическая квадратов отклонений каждого значения признака от средней арифметической.

Расчёт дисперсии в интервальных рядах распределения производится по формуле:

Порядок расчёта дисперсии в этом случае следующий:

1. Определяют среднюю арифметическую взвешенную, как показано в п. 2).

2. Находят отклонения вариант от средней:

3. Возводят в квадрат отклонения каждой варианты от средней:

4. Умножают квадраты отклонений на веса (частоты):

5. Суммируют полученные произведения:

6. Полученная сумма делится на сумму весов (частот):

Расчёты оформим в таблицу:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х
200-400 32 300 -480 230400 7372800
400-600 56 500 -280 78400 4390400
600-800 120 700 -80 6400 768000
800-1000 104 900 120 14400 1497600
1000-1200 88 1100 320 102400 9011200
Итого 400 - - - 23040000
  • Ответы на экзаменационные вопросы по общественному здоровью и здравоохранению.
  • 1. Общественное здоровье и здравоохранение как наука и область практической деятельности. Основные задачи. Объект, предмет изучения. Методы.
  • 2. Здравоохранение. Определение. История развития здравоохранения. Современные системы здравоохранения, их характеристика.
  • 3. Государственная политика в области охраны здоровья населения (Закон Республики Беларусь "о здравоохранении"). Организационные принципы государственной системы здравоохранения.
  • 4. Страховая и частная формы здравоохранения.
  • 5. Профилактика, определение, принципы, современные проблемы. Виды, уровни, направления профилактики.
  • 6. Национальные программы профилактики. Роль их в укреплении здоровья населения.
  • 7. Врачебная этика и деонтология. Определение понятия. Современные проблемы врачебной этики и деонтологии, характеристика.
  • 8. Здоровый образ жизни, определение понятия. Социальные и медицинские аспекты здорового образа жизни (зож).
  • 9. Гигиеническое обучение и воспитание, определение, основные принципы. Методы и средства гигиенического обучения и воспитания. Требования к лекции, санитарному бюллетеню.
  • 10. Здоровье населения, факторы, влияющие на здоровье населения. Формула здоровья. Показатели, характеризующие общественное здоровье. Схема анализа.
  • 11. Демография как наука, определение, содержание. Значение демографических данных для здравоохранения.
  • 12. Статика населения, методика изучения. Переписи населения. Типы возрастных структур населения.
  • 13. Механическое движение населения. Характеристика миграционных процессов, влияние их на показатели здоровья населения.
  • 14. Рождаемость как медико-социальная проблема. Методика вычисления показателей. Уровни рождаемости по данным воз. Современные тенденции.
  • 15. Специальные показатели рождаемости (показатели фертильности). Воспроизводство населения, типы воспроизводства. Показатели, методика вычисления.
  • 16. Смертность населения как медико-социальная проблема. Методика изучения, показатели. Уровни общей смертности по данным воз. Современные тенденции.
  • 17. Младенческая смертность как медико-социальная проблема. Факторы, определяющие ее уровень.
  • 18. Материнская и перинатальная смертность, основные причины. Показатели, методика вычисления.
  • 19. Естественное движение населения, факторы на него влияющие. Показатели, методика вычисления. Основные закономерности естественного движения в Беларуси.
  • 20. Планирование семьи. Определение. Современные проблемы. Медицинские организации и службы планирования семьи в рб.
  • 21. Заболеваемость как медико-социальная проблема. Современные тенденции и особенности в Республике Беларусь.
  • 22. Медико-социальные аспекты нервно-психического здоровья населения. Организация психоневрологической помощи
  • 23. Алкоголизм и наркомания как медико-социальная проблема
  • 24. Болезни системы кровообращения как медико-социальная проблема. Факторы риска. Направления профилактики. Организация кардиологической помощи.
  • 25. Злокачественные новообразования как медико-социальная проблема. Основные направления профилактики. Организация онкологической помощи.
  • 26. Международная статистическая классификация болезней. Принципы построения, порядок пользования. Значение ее в изучении заболеваемости и смертности населения.
  • 27. Методы изучения заболеваемости населения, их сравнительная характеристика.
  • Методика изучения общей и первичной заболеваемости
  • Показатели общей и первичной заболеваемости.
  • Показатели инфекционной заболеваемости.
  • Основные показатели, характеризующие важнейшую неэпидемическую заболеваемость.
  • Основные показатели "госпитализированной" заболеваемости:
  • 4) Заболевания с временной утратой трудоспособности (вопрос 30)
  • Основные показатели для анализа заболеваемости с вут.
  • 31. Изучение заболеваемости по данным профилактических осмотров населения, виды профилактических осмотров, порядок проведения. Группы здоровья. Понятие «патологическая пораженность».
  • 32. Заболеваемость по данным о причинах смерти. Методика изучения, показатели. Врачебное свидетельство о смерти.
  • Основные показатели заболеваемости по данным о причинах смерти:
  • 33. Инвалидность как медико-социальная проблема Определение понятия, показатели. Тенденции инвалидности в Республике Беларусь.
  • Тенденции инвалидности в рб.
  • 34. Первичная медико-санитарная помощь (пмсп), определение, содержание, роль и место в системе медицинского обслуживания населения. Основные функции.
  • 35. Основные принципы первичной медико-санитарной помощи. Медицинские организации первичной медико-санитарной помощи.
  • 36. Организация медицинской помощи, предоставляемой населению амбулаторно. Основные принципы. Учреждения.
  • 37. Организация медицинской помощи в условиях стационара. Учреждения. Показатели обеспеченности стационарной помощью.
  • 38. Виды медицинской помощи. Организация специализированной медицинской помощи населению. Центры специализированной медицинской помощи, их задачи.
  • 39. Основные направления совершенствования стационарной и специализированной помощи в Республике Беларусь.
  • 40. Охрана здоровья женщин и детей в Республике Беларусь. Управление. Медицинские организации.
  • 41. Современные проблемы охраны здоровья женщин. Организация акушерско-гинекологической помощи в Республике Беларусь.
  • 42. Организация лечебно-профилактической помощи детскому населению. Ведущие проблемы охраны здоровья детей.
  • 43. Организация охраны здоровья сельского населения, основные принципы оказания медицинской помощи сельским жителям. Этапы. Организации.
  • II этап – территориальное медицинское объединение (тмо).
  • III этап – областная больница и медицинские учреждения области.
  • 45. Медико-социальная экспертиза (мсэ), определение, содержание, основные понятия.
  • 46. Реабилитация, определение, виды. Закон Республики Беларусь «о предупреждении инвалидности и реабилитации инвалидов».
  • 47. Медицинская реабилитация: определение понятия, этапы, принципы. Служба медицинской реабилитации в Республике Беларусь.
  • 48. Городская поликлиника, структура, задачи, управление. Основные показатели деятельности поликлиники.
  • Основные показатели деятельности поликлиники.
  • 49. Участковый принцип организации амбулаторной помощи населению. Виды участков. Территориальный терапевтический участок. Нормативы. Содержание работы участкового врача-терапевта.
  • Организация работы участкового терапевта.
  • 50. Кабинет инфекционных заболеваний поликлиники. Разделы и методы работы врача кабинета инфекционных заболеваний.
  • 52. Основные показатели, характеризующие качество и эффективность диспансерного наблюдения. Методика их вычисления.
  • 53. Отделение медицинской реабилитации (омр) поликлиники. Структура, задачи. Порядок направления больных в омр.
  • 54. Детская поликлиника, структура, задачи, разделы работы. Особенности оказания медицинской помощи детям в амбулаторных условиях.
  • 55. Основные разделы работы участкового педиатра. Содержание лечебно-профилактической работы. Связь в работе с другими лечебно-профилактическими учреждениями. Документация.
  • 56. Содержание профилактической работы участкового врача-педиатра. Организация патронажного наблюдения за новорожденными.
  • 57. Структура, организация, содержание работы женской консультации. Показатели работы по обслуживанию беременных женщин. Документация.
  • 58. Родильный дом, структура, организация работы, управление. Показатели деятельности родильного дома. Документация.
  • 59. Городская больница, ее задачи, структура, основные показатели деятельности. Документация.
  • 60. Организация работы приемного отделения больницы. Документация. Мероприятия по профилактике внутрибольничных инфекций. Лечебно-охранительный режим.
  • Раздел 1. Сведения о подразделениях, установках лечебно-профилактической организации.
  • Раздел 2. Штаты лечебно-профилактической организации на конец отчетного года.
  • Раздел 3. Работа врачей поликлиники (амбулаторий), диспансера, консультации.
  • Раздел 4. Профилактические медицинские осмотры и работа стоматологических (зубоврачебных) и хирургических кабинетов лечебно-профилактической организации.
  • Раздел 5. Работа лечебно-вспомогательных отделений (кабинетов).
  • Раздел 6. Работа диагностических отделений.
  • 62. Годовой отчет о деятельности стационара (ф. 14), порядок составления, структура. Основные показатели деятельности стационара.
  • Раздел 1. Состав больных в стационаре и исходы их лечения
  • Раздел 2. Состав больных новорожденных, переведенных в другие стационары в возрасте 0-6 суток и исходы их лечения
  • Раздел 3. Коечный фонд и его использование
  • Раздел 4. Хирургическая работа стационара
  • 63. Отчет о медицинской помощи беременным, роженицам и родильницам (ф. 32), структура. Основные показатели.
  • Раздел I. Деятельность женской консультации.
  • Раздел II. Родовспоможение в стационаре
  • Раздел III. Материнская смертность
  • Раздел IV. Сведения о родившихся
  • 64. Медико-генетическое консультирование, основные учреждения. Его роль в профилактике перинатальной и младенческой смертности.
  • 65. Медицинская статистика, ее разделы, задачи. Роль статистического метода в изучении здоровья населения и деятельности системы здравоохранения.
  • 66. Статистическая совокупность. Определение, виды, свойства. Особенности проведения статистического исследования на выборочной совокупности.
  • 67. Выборочная совокупность, требования, предъявляемые к ней. Принцип и способы формирования выборочной совокупности.
  • 68. Единица наблюдения. Определение, характеристика учетных признаков.
  • 69. Организация статистического исследования. Характеристика этапов.
  • 70. Содержание плана и программы статистического исследования. Виды планов статистического исследования. Программа наблюдения.
  • 71. Статистическое наблюдение. Сплошное и несплошное статистическое исследование. Виды несплошного статистического исследования.
  • 72. Статистическое наблюдение (сбор материалов). Ошибки статистического наблюдения.
  • 73. Статистическая группировка и сводка. Типологическая и вариационная группировка.
  • 74. Статистические таблицы, виды, требования к построению.

81. Среднее квадратическое отклонение, методика расчета, применение.

Приближенный метод оценки колеблемости вариационного ряда - определение лимита и амплитуды, однако не учитывают значений вариант внутри ряда. Основной общепринятой мерой колеблемости количественного приз­нака в пределах вариационного ряда является среднее квадратичес­кое отклонение (σ - сигма) . Чем больше среднее квадратическое отклонение, тем степень ко­леблемости данного ряда выше.

Методика расчета среднего квадратического отклонения включает следующие этапы:

1. Находят среднюю арифметическую величину (Μ).

2. Определяют отклонения отдельных вариант от средней арифмети­ческой (d=V-M). В медицинской статистике отклонения от средней обозначаются как d (deviate). Сумма всех от­клонений равняется нулю.

3. Возводят каждое отклонение в квадрат d 2 .

4. Перемножают квадраты отклонений на соответствующие частоты d 2 *p.

5. Находят сумму произведений (d 2 *p)

6. Вычисляют среднее квадратическое отклонение по формуле:

при n больше 30, или
при n меньше либо равно 30, где n - число всех вариант.

Значение среднего квадратичного отклонения:

1. Среднее квадратическое отклонение характеризует разброс вариант относительно средней величины (т.е. колеблемость вариационного ряда). Чем больше сигма, тем степень разнообразия данного ряда выше.

2. Среднее квадратичное отклонение используется для сравнительной оценки степени соответствия средней арифметической величины тому вариационному ряду, для которого она вычислена.

Вариации массовых явлений подчиняются закону нормального распределения. Кривая, отображающая это распределение, имеет вид плавной колоколообразной симметричной кривой (кривая Гаусса). Согласно теории вероятности в явлениях, подчиняющихся закону нормального распределения, между значениями средней арифметической и среднего квадратического отклонения существует строгая математическая зависимость. Теоретическое распределение вариант в однородном вариационном ряду подчиняется правилу трех сигм.

Если в системе прямоугольных координат на оси абсцисс отложить значения количественного признака (варианты), а на оси ординат - частоты встречаемости вариант в вариационном ряду, то по сторонам от средней арифметической равномерно располагаются варианты с большими и меньшими значениями.

Установлено, что при нормальном распределении признака:

68,3% значений вариант находится в пределах М1

95,5% значений вариант находится в пределах М2

99,7% значений вариант находится в пределах М3

3. Среднее квадратическое отлонение позволяет установить значения нормы для клинико-биологических показателей. В медицине интервал М1 обычно принимается за пределы нормы для изучаемого явления. Отклонение оцениваемой величины от средней арифметической больше, чем на 1 указывает на отклонение изучаемого параметра от нормы.

4. В медицине правило трех сигм применяется в педиатрии для индивидуальной оценки уровня физического развития детей (метод сигмальных отклонений), для разработки стандартов детской одежды

5. Среднее квадратическое отклонение необходимо для характеристики степени разнообразия изучаемого признака и вычисления ошибки средней арифметической величины.

Величина среднего квадра­тического отклонения обычно используется для сравнения колеблемости однотипных рядов. Если сравниваются два ряда с разными признаками (рост и масса тела, средняя длительность лечения в стационаре и больничная летальность и т.д.), то непосредственное сопоставление размеров сигм невозможно, т.к. среднеквадратичес­кое отклонение - именованная величина, выраженная в абсолютных числах. В этих случаях применяют коэффициент вариации (Cv ) , представляющий собой относительную величину: процентное отноше­ние среднего квадратического отклонения к средней арифметической.

Коэффициент вариации вычисляется по формуле:

Чем выше коэффициент вариации, тем большая изменчивость данно­го ряда. Считают, что коэффициент вариации свыше 30 % свиде­тельствует о качественной неоднородности совокупности.