Каков он, идеальный вариант? Виды систем отопления, их преимущества. Основные виды отопления помещений Виды центрального отопления применяемые в жилых помещениях

В зависимости от преобладающего способа теплопередачи отопление помещений может быть конвективным или лучистым.

К конвективному относят отопление, при котором температура внутреннего воздуха поддерживается на более высоком уровне, чем радиационная температура помещения, понимая под радиационной усредненную температуру поверхностей, обращенных в помещение, вычисленную относительно человека, находящегося в середине этого по­мещения. Это широко распространенный способ отопления.

Лучистым называют отопление, при котором радиационная температура помещения превышает температуру воздуха. Лучистое отопление при несколько пониженной температуре воздуха (по сравнению с конвективным отоплением) более благоприятно для самочувствия человека в помещении (например, до 18-20 °с вместо 20-22 °с в помещениях гражданских зданий).

Конвективное или лучистое отопление помещений осуществляется специальной технической установкой, называемой системой отопления. Система отопления — это совокупность конструктивных элементов со связями между ними, предназначенных для получения, переноса и передачи теплоты в обогреваемые помещения здания.

Основные конструктивные элементы системы отопления (рисунок 1):

  • теплоисточник ( при местном или теплообменник при централизованном теплоснабжении) — элемент для получения теплоты;
  • теплопроводы — элемент для переноса теплоты от теплоисточника к ;
  • отопительные приборы — элемент для передачи теплоты в помещение.

Рисунок 1. Схема системы отопления: 1 — теплогенератор или теплообменник и ; 2 — подача то­плива или подвод первичного теплоносителя; 3 — подающий теплопровод; 4 — отопитель­ный прибор; 5 — обратный теплопровод.

Перенос по теплопроводам может осуществляться с помощью жидкой или газообразной рабочей среды. Жидкая (вода или специальная незамерзающая жидкость — антифриз) или газообразная (пар, воздух, продукты сгорания топлива) среда, перемещающаяся в системе отопления, называется теплоносителем.

Система отопления для выполнения возложенной на нее задачи должна обладать определенной тепловой мощностью. Расчетная тепловая мощность системы выявляется в результате составления теплового баланса в обогреваемых помещениях при температуре наружного воздуха.

Текущие (сокращенные) теплозатраты на отопление имеют место в течение почти всего времени отопительного сезона, поэтому теплоперенос к отопительным приборам должен изменяться в широких пределах. Этого можно достичь путем изменения (регулирования) температуры и (или) количества перемещающегося в системе отопления теплоносителя.

Требования к системе отопления

Санитарно-гигиенические : поддержание заданной температуры воздуха и внутренних поверхностей ограждений помещения во времени, в плане и по высоте при допустимой подвижности воздуха, ограничение температуры на поверхности отопительных приборов;

Экономические: оптимальные капитальные вложения, экономный расход тепловой энергии при эксплуатации;

Архитектурно-строительные: соответствие интерьеру помещения, компактность, увязка со строительными конструкциями, согласование со сроком строительства здания;

Производственно-монтажные: минимальное число унифицированных узлов и деталей, механизация их изготовления, сокращение трудовых затрат и ручного труда при монтаже;

Эксплуатационные: эффективность действия в течение всего периода работы, надежность (безотказность, долговечность, ремонтопригодность) и техническое совершенство, безопасность и бесшумность действия.

Деление требований на пять групп условно, так как в них входят требования, относящиеся как к периоду проектирования и строительства, так и эксплуатации здания.

Наиболее важны санитарно-гигиенические и эксплуатационные требования, которые обусловливаются необходимостью поддерживать заданную температуру в помещениях в течение отопительного сезона и всего срока службы системы отопления здания.

Классификация систем отопления

Системы отопления по расположению основных элементов подразделяются на местные и центральные.

В местных системах для отопления, как правило, одного помещения все три основных элемента конструктивно объединяются в одной установке, непосредственно в которой происходит получение, перенос и передача теплоты в помещение. Теплопереносящая рабочая среда нагревается горячей водой, паром, электричеством или при сжигании какого-либо топлива.

Еще одним примером местной системы отопления могут служить отопительные печи, конструкции и расчет которых будут рассмотрены.

В местной системе теплопередача может осуществляться с помощью жидкого или газообразного теплоносителя либо без него непосредственно от разогретого твердого элемента.

Центральными называются системы, предназначенные для отопления группы помещений из единого теплового центра. В тепловом центре находятся теплогенераторы (котлы) или теплообменники. Они могут размещаться непосредственно в обогреваемом здании (в котельной или местном тепловом пункте) либо вне здания — в центральном тепловом пункте (ЦТП), на тепловой станции (отдельно стоящей котельной) или ТЭЦ.

Теплопроводы центральных систем подразделяют на магистрали (подающие, по которым подается теплоноситель, и обратные, по которым отводится охладившийся теплоноситель), стояки (вертикальные трубы или каналы) и ветви (горизонтальные трубы или каналы), связывающие магистрали с подводками к отопительным приборам (с ответвления­ми к помещениям при теплоносителе воздухе).

Примером центральной системы является система отопления здания с собственным тепловым пунктом или котельной, принципиальная схема которой не будет отличаться от схемы на рисунке 1, если отопительные приборы размещены во всех обогреваемых помещениях этого здания.

Центральная система отопления называется районной, когда группа зданий отапливается из отдельно стоящей центральной тепловой станции. Теплогенераторы, теплообменники и отопительные приборы системы здесь также разделены: теплоноситель (например, вода) нагревается на тепловой станции, перемещается по наружным и внутренним (внутри здания) теплопроводам в отдельные помещения каждого здания к отопительным приборам и, охладившись, возвращается на тепловую станцию (рисунок 2).

Рисунок 2. Схема районной системы отопления: 1 — приготовление первичного теплоносите­ля; 2 — местный тепловой пункт; 3 и 5 — внутренние подающие и обратные теплопроводы; 4 — отопительные приборы; б и 7 — наружный подающий и обратный теплопроводы; 8 — цир­куляционный насос наружного теплопровода

В современных системах теплоснабжения зданий от ТЭЦ или крупных тепловых станций используются два теплоносителя. Первичный высокотемпературный теплоноситель перемещается от ТЭЦ или тепловой станции по городским распределительным теплопроводамк цтп или непосредственно к местным тепловым пунктам зданий и обратно. Вторичный теплоноситель после нагревания в теплообменниках (или смешения с первичным) поступает по наружным (внутриквартальным) и внутренним теплопроводам к отопительным приборам обогреваемых помещений зданий и затем возвращается в цтп или местный тепловой пункт.

Первичным теплоносителем обычно служит вода, реже пар или газообразные продукты сгорания топлива. Если, например, первичная высокотемпературная вода нагревает вторичную воду, то такая центральная система отопления именуется водоводяной. Аналогично могут существовать водовоздушная, пароводяная, паровоздушная, газовоздушная и другие системы центрального отопления.

По виду основного (вторичного) теплоносителя местные и центральные системы отопления принято называть системами , парового, воздушного или газового отопления.

Теплоносители в системах отопления

Движущаяся среда в системе отопления — теплоноситель — аккумулирует теплоту и затем передает ее в обогреваемые помещения. Теплоносителем для отопления может быть подвижная, жидкая или газообразная среда, соответствующая требованиям, предъявляемым к системе отопления.

Для отопления зданий и сооружений в настоящее время преимущественно используют воду или атмосферный воздух, реже водяной пар или нагретые газы.

Сопоставим характерные свойства указанных видов теплоносителя при использовании их в системах отопления.

Газы, образующиеся при сжигании твердого, жидкого или газообразного органического топлива, имеют сравнительно высокую температуру и применимы в тех случаях, когда в соответствии с санитарно-гигиеническими требованиями удается ограничить температуру теплоотдающей поверхности отопительных приборов. При транспортировании горячих газов имеют место значительные попутные теплопотери, обычно бесполезные для обогревания помещения.

Высокотемпературные продукты сгорания топлива могут выпускаться непосредственно в помещения или сооружения, но при этом ухудшается состояние их воздушной среды, что в большинстве случаев недопустимо. Удаление же продуктов сгорания наружу по каналам усложняет конструкцию и понижает кпд отопительной установки. При этом возникает необходимость решения экологических проблем, связанных с возможным загрязнением атмосферного воздуха продуктами сгорания вблизи отапливаемых объектов.

Область использования горячих газов ограничена отопительными печами, газовыми калориферами и другими подобными местными отопительными установками.

В отличие от горячих газов вода, воздух и пар используются многократно в режиме циркуляции и без загрязнения окружающей здание среды.

Вода представляет собой жидкую, практически несжимаемую среду со значительной плотностью и теплоемкостью. Вода изменяет плотность, объем и вязкость в зависимости от температуры, а температуру кипения — в зависимости от давления, способна сорбировать или выделять растворимые в ней газы при изменении температуры и давления.

Пар является легкоподвижной средой со сравнительно малой плотностью. Температура и плотность пара зависят от давления. Пар значительно изменяет объем и энтальпию при фазовом превращении.

Воздух также является легкоподвижной средой со сравнительно малыми вязкостью, плотностью и теплоемкостью, изменяющей плотность и объем в зависимости от температуры.

Сравним эти три теплоносителя по показателям, важным для выполнения требований, предъявляемых к системе отопления.

Одним из санитарно-гигиенических требований является поддержание в помещениях равномерной температуры. По этому показателю преимущество перед другими теплоносителями имеет воздух. При использовании нагретого воздуха-теплоносителя с низкой теплоинерционностью — можно постоянно поддерживать равномерной температуру каждого отдельного помещения, быстро изменяя температуру подаваемого воздуха, т.е. Проводя так называемое эксплуатационное регулирование. При этом одновременно с ото­плением можно обеспечить вентиляцию помещений.

Применение в системах отопления горячей воды также позволяет поддерживать равномерную температуру помещений, что достигается регулированием температуры, подаваемой в отопительные приборы воды. При таком регулировании температура помещений все же может несколько отклоняться от заданной (на 1 -2 °С) вследствие тепловой инерции масс воды, труб и приборов.

При использовании пара температура помещений неравномерна, что противоречит гигиеническим требованиям. Неравномерность температуры возникает из-за несоответствия теплопередачи приборов при неизменной температуре пара (при постоянном давлении) изменяющимся теплопотерям помещения в течение отопительного сезона. В связи с этим приходится уменьшать количество подаваемого в приборы пара и даже периодически от­ключать их во избежание перегревания помещений при уменьшении их теплопотерь.

Другое санитарно-гигиеническое требование — ограничение температуры наружной поверхности отопительных приборов — вызвано явлением разложения и сухой возгонки органической пыли на нагретой поверхности, сопровождающимся выделением вредных веществ, в частности окиси углерода. Разложение пыли начинается при температуре 65-70 °С и интенсивно протекает на поверхности, имеющей температуру более 80 °С.

При использовании пара в качестве теплоносителя температура поверхности большинства отопительных приборов и труб постоянна и близка или выше 100 °С, т.е. Превышает гигиенический предел. При отоплении горячей водой средняя температура нагретых поверхностей, как правило, ниже, чем при применении пара. Кроме того, температуру воды в системе отопления понижают для снижения теплопередачи приборов при уменьшении теплопотерь помещений. Поэтому при теплоносителе воде средняя температура поверхности приборов в течение отопительного сезона практически не превышает гигиенического предела.

Важным экономическим показателем при применении различных теплоносителей является расход металла на теплопроводы и отопительные приборы.

При использовании воды обеспечивается достаточно равномерная температура помещений, можно ограничить температуру поверхности отопительных приборов, сокращается по сравнению с другими теплоносителями площадь поперечного сечения труб, достигается бесшумность движения в теплопроводах. Недостатками применения воды являются значительный расход металла и большое гидростатическое давление в системах. Тепловая инерция воды замедляет регулирование теплопередачи приборов.

При использовании пара сравнительно сокращается расход металла за счет уменьшения площади приборов и поперечного сечения конденсатопроводов, достигается быстрое прогревание приборов и отапливаемых помещений. Гидростатическое давление пара в вертикальных трубах по сравнению с водой минимально. Однако пар как теплоноситель не отвечает санитарно-гигиеническим требованиям, его температура высока и постоянна при данном давлении, что затрудняет регулирование теплопередачи приборов, движение его в трубах сопровождается шумом.

При использовании воздуха можно обеспечить быстрое изменение или равномерность температуры помещений, избежать установки отопительных приборов, совмещать отопление с вентиляцией помещений, достигать бесшумности его движения в воздуховодах и каналах. Недостатками являются его малая теплоаккумулирующая способность, значительные площадь поперечного сечения и расход металла на воздуховоды, относительно большое понижение температуры по их длине.

Основные виды систем отопления

В настоящее время в россии применяют центральные системы в основном водяного и, значительно реже, парового отопления, местные и центральные системы воздушного отопления, а также печное отопление в сельской местности. Приведем общую характеристику этих систем с детальной классификацией на основании рассмотренных свойств теплоносителей.

При водяном отоплении циркулирующая нагретая вода охлаждается в отопительных приборах и возвращается к теплоисточнику для последующего нагревания.

Системы водяного отопления по способу создания циркуляции воды разделяются на системы с естественной циркуляцией (гравитационные) и с механическим побуждением циркуляции воды при помощи насоса (насосные). В гравитационной системе (рисунок 3, а) используется свойство воды изменять свою плотность при изменении температуры. В замкнутой вертикальной системе с неравномерным распределением плотности под действием гравитационного поля земли возникает естественное движение воды.

В насосной системе (рисунок 3, б) используется насос с электрическим приводом для создания разности давления, вызывающей циркуляцию, и в системе создается вынужденное движение воды.

Рисунок 3. Схемы системы водяного отопления: а — с естественной циркуляцией (гравитационная); б — с механическим побуждением циркуляции воды (насосная); 1 — теплообменник; 2 — подающий теплопровод (т1); 3 — расширительный бак; 4 — отопительный прибор; 5 -обратный теплопровод (т2); 6 — циркуляционный насос; 7 — устройство для выпуска воздуха из системы

По температуре теплоносителя различаются системы низкотемпературные с предельной температурой горячей воды ниже 70 °С, среднетемпературные от 70 до 100 °С и высокотемпературные выше 100 °С. Максимальное значение температуры воды ограничено в настоящее время 150°С.

По положению труб, объединяющих отопительные приборы по вертикали или горизонтали, системы делятся на вертикальные и горизонтальные.

В зависимости от схемы соединения труб с отопительными приборами системы бывают однотрубные и двухтрубные.

В каждом стояке или ветви однотрубной системы отопительные приборы соединяются одной трубой, и вода протекает последовательно через все приборы. Если каждый прибор разделен условно на две части («д» и «б»), в которых вода движется в противоположных направлениях и теплоноситель последовательно проходит сначала через все части «а», а затем через все части «б», то такая однотрубная система носит название бифилярной (двухпоточной).

В двухтрубной системе каждый отопительный прибор присоединяется отдельно к двум трубам — подающей и обратной, и вода протекает через каждый прибор независимо от других приборов.

При воздушном отоплении циркулирующий нагретый воздух охлаждается, передавая теплоту при смешении с воздухом обогреваемых помещений и иногда через их внутренние ограждения. Охлажденный воздух возвращается к нагревателю.

Системы воздушного отопления по способу создания циркуляции воздуха разделяются на системы с естественной циркуляцией (гравитационные) и с механическим побуждением движения воздуха с помощью вентилятора.

В гравитационной системе используется различие в плотности нагретого и окружающего отопительную установку воздуха. Как и в водяной вертикальной гравитационной системе, при различной плотности воздуха в вертикальных частях возникает естественное движение воздуха в системе. При применении вентилятора в системе создается вынужденное движение воздуха.

Воздух, используемый в системах отопления, нагревается до температуры, обычно не превышающей 60 °с, в специальных теплообменниках -калориферах. Калориферы могут обогреваться водой, паром, электричеством или горячими газами. Система воздушного отопления при этом соответственно называется водовоздушной, паровоздушной, элек­тровоздушной или газовоздушной.

Может быть местным (рисунок 4, а) или центральным (рисунок 4, б)


Рисунок 4. Схемы системы воздушного отопления: а — местная система; б — центральная система; 1 — отопительный агрегат; 2 — обогреваемое помещение (помещения на рис. Б); 3 -рабочая (обслуживаемая) зона помещения; 4 — обратный воздуховод; 5 — вентилятор; б -теплообменник (калорифер); 7 — подающий воздуховод.

В местной системе воздух нагревается в отопительной установке с теплообменником (калорифером или другим отопительным прибором), находящимся в обогреваемом помещении.

В центральной системе теплообменник (калорифер) размещается в отдельном помещении (камере). Холодный воздух подводится к калориферу по обратному (рециркуляционному) воздуховоду. Горячий воздух от калорифера перемещается вентилятором в обогреваемые помещения по подающим воздуховодам.

Используемая литература:

  1. А.Н. Сканави, Л.М. Махов. Отопление: учебник для студентов вузов. М.: асв – 2002 г – 576 c.

Системы отопления можно делить и классифицировать по-разному, но начать, скорее всего, лучше с источника тепла, или точнее - вида используемого топлива. Итак, системы отопления, в зависимости от вида энергоносителя могут быть:

  • Газовые . Газ – относительно недорогой источник энергии (имеется в виду магистральный газ, так как сжиженный газ по стоимости уже сравним с другими источниками энергии). На его основе можно реализовать практически любую схему отопления, от горелки в печи до газовых конвекторов и инфракрасных обогревателей. Основной недостаток газа в том, что не всегда он есть, точнее не всегда есть возможность его провести за приемлемую сумму. Ещё одним недостатком газового отопления является необходимость согласования проекта с газовыми службами.
  • Электрические . Электричество так же позволяет реализовать огромное количество вариантов и схем отопления. От подобных газовых схем электрические варианты отличаются простотой установки (сравните монтаж водяного и электрического теплого пола) и соответственно меньшими капиталовложениями. Минусом электроотопления является цена на электричество. Для загородных домов, существенным фактором будет ограничение на потребление электроэнергии, обычно 10–15 кВт (бывает меньше) и невысокое качество электроснабжения (скачки напряжения, кратковременные отключения и пр.).
  • Твёрдотопливные (пеллетные, дровяные, угольные). Там где нет магистрального газа, и есть проблемы с электричеством, твердотопливные варианты отопления станут отличным решением вопроса. Современное оборудование для автоматизации и дозирования очень сильно упрощает процесс топки. Общий недостаток для твердого и жидкого топлива, а также для сжиженного газа – то, что топливо придется возить и хранить. Да и цена, относительно магистрального газа, у этих энергоносителей высокая.
  • Жидкотопливные (дизтопливо, солярка, легкие сорта мазута). Ещё один вариант для автономного отопления. Современное оборудование, работающее на жидком топливе, обладает довольно высоким КПД, а системы автоматики упрощают управление и снижают расход топлива. Однако, жидкотопливная горелка – сложное и дорогое устройство, что увеличивает капиталовложения. К недостаткам также относятся высокая цена жидкого топлива и необходимость его транспортировки и хранения.
  • Комбинированные – системы, в которых для обогрева помещения используются различные виды топлива. Например, радиаторную водяную систему с газовым котлом можно дополнить электрическим теплым полом или инфракрасными обогревателями. Все зависит от конкретных условий, требуемых параметров микроклимата и, конечно, фантазии.

    Сюда же относятся системы с комбинированными (многотопливными) котлами. Такие котлы могут работать на двух, трех и даже четырех видах топлива. Очевидно, что такой котёл увеличивает бесперебойность и автономность системы. Так же очевидно, что стоимость таких агрегатов (и их ремонта) будет существенно выше, и чем больше вариантов топлива, которое может ""съесть"" такой котел, тем выше цена.

  • Альтернативные системы используют энергию земли и(или) солнца. Это почти автономные, очень экологичные и экономичные системы отопления. Главные недостатки таких систем – сложность и высокая стоимость проектирования и монтажа.

Конвективное и лучистое отопление

К нему относятся все виды отопления, в которых тепловая энергия передается благодаря перемещению объемов горячего и холодного воздуха. Теплый воздушный поток устремляется вверх, холодный/остывший воздух опускается вниз. Отсюда и основной недостаток конвективного отопления - большой перепад температур в помещении, т.е. высокая температура воздуха под потолком и низкая у пола. Самым ярким примером является отопление с помощью тепловых пушек и тепловентиляторов.

Инфракрасное (лучистое) отопление – вид отопления, при котором тепло передается излучением. Этакое комнатное солнышко. Отопительные приборы размещают непосредственно над или под обогреваемой зоной. Инфракрасные обогреватели – самый ""лучистый’’ вид отопления. Основной недостаток - то, что при неправильном расчете (монтаже) и эксплуатации (длительное использование) можно получить перегрев предметов и тела человека.

Конвективно-лучистое . Большинство отопительных приборов (радиаторы, конвекторы, теплые полы и стены) являются конвективно – лучистыми, но соотношение конвекции и излучения у всех разное.

При выборе способа отопления важно учесть, что оптимальным и наиболее комфортным считается примерно равное (50/50) соотношение конвективного и лучистого тепла.

Теплоноситель для систем отопления

Теплоноситель - вещество, применяемое для передачи тепловой энергии. По типу теплоносителя системы отопления можно разделить на водяные (жидкостные), паровые, воздушные и комбинированные. В некоторых случаях теплоноситель отсутствует, например инфракрасное отопление.

Системы водяного отопления

Самый распространенный, на данный момент, вид систем отопления. Отсюда такое количество вариантов, схем, материалов и способов исполнения. Коротко приведем основную классификацию и перейдем к "частным случаям".

Классификация видов систем водяного отопления:

  • По способу создания циркуляции:
    • С естественной циркуляцией/гравитационные (за счет разности давления в контуре).
    • С принудительной циркуляцией/насосные (с помощью циркуляционного насоса).
  • Виды разводки систем отопления:
    • Верхняя
    • Нижняя
    • Комбинированная
    • Горизонтальная
    • Вертикальная;
  • Виды труб для разводки отопления:
    • Стальные трубы
    • Полипропиленовые трубы
    • Металлопластиковые трубы
    • Гофрированная нержавеющая труба
    • Медные трубы
    • PEX-труба (сшитый полиэтилен).
  • По ходу движения теплоносителя в магистральных трубопроводах:
    • Тупиковые
    • Попутные;
  • По способу подключения приборов отопления:
    • Однотрубные
    • Двухтрубные
    • Коллекторные
    • Комбинированные;
  • По способу присоединения системы к тепловой сети:
    • Независимая
    • Зависимая.

Итак, с классификацией в стиле Википедии мы закончили. Перейдем к более простому и понятному разделению.

Отопительные приборы систем водяного отопления

Отопительный прибор - устройство для обогрева помещения путём передачи теплоты от теплоносителя, поступающего от источника теплоты, в окружающую среду. (Wiki)

По виду этих "устройств" мы получаем самое распространенное разделение систем водяного отопления:

  • радиаторное отопление;
  • система «теплый пол (стены)»;
  • плинтусное отопление;
  • инфракрасное водяное отопление;
  • комбинированные системы.

Стоит отметить, что такая классификация применима и к электрическим системам без теплоносителя. Но, пока, чуть подробнее рассмотрим водяные системы.

Радиаторное водяное отопление

Первое на что все обращают внимание – это вид радиаторов (батарей) отопления. Не будем их сравнивать в этой статье, просто перечислим:

  • Чугунные радиаторы
  • Алюминиевые радиаторы (цельные и секционные)
  • Биметаллические радиаторы
  • Стальные (панельные и секционные) радиаторы
  • Каменные и керамические радиаторы
  • Гладкотрубные приборы - одна, или несколько соединенных вместе стальных труб.
  • Конвекторы

Пожалуй, радиаторное водяное отопление - это самый распространенный вид отопления на территории бывшего СССР. Большая часть централизованных систем отопления выполнена в виде радиаторного отопления. В частном (автономном) варианте такая система может быть реализована на любом энергоносителе, хотя применение альтернативных источников энергии не всегда целесообразно.

Теплый водяной пол

Эта система продолжает набирать популярность, хотя она сложнее в расчете и монтаже, чем та же радиаторная система. По сути, теплый пол - один большой отопительный прибор. Качественными преимуществами теплого пола являются: равномерное распределение температур (не греем потолок, плюс ногам тепло), свободные от радиаторов стены и близкое к оптимальному соотношение лучистого и конвективного тепла.

Теплые стены устроены по тому же принципу что и теплые полы, с некоторыми техническими особенностями. Эта система имеет свои плюсы и призвана решать специфические конструкционные и технические задачи.

Плинтусное отопление

Относительно новая в России система отопления. По утверждению производителей теплоотдача идет в и сторону пола, и в сторону стен. Так же встречается утверждение, что это лучистая система отопления. Это не совсем так, ведь нагрев стен происходит за счет теплого воздуха, поднимающегося от плинтуса, т.е. за счет конвекции. Каждая секция теплого плинтуса – это небольшой конвектор с кожухом. Монтаж секции похож на монтаж обычного радиатора.

Водяное инфракрасное отопление и теплый потолок

Ещё один вариант для инфракрасного обогрева помещения. Обычно такие системы реализуются с помощью водяных инфракрасных обогревателей. Теплый водяной потолок – большая инфракрасная панель, реализованная, как зеркальное отражение системы теплого пола. Преимуществом является то, что такую систему можно использовать для отопления зимой и для охлаждения летом.

Паровое отопление

Сейчас паровое отопление в жилых и общественных зданиях не применяется, из-за травмоопасности (температура пара 130С?). Чаще оно встречается на предприятиях, где пар применяется для производственных нужд или является побочным продуктом производства. Хотя, запрета на применение парового отопления в частных домах нет. Для парового отопления можно использовать все виды энергоносителей, кроме альтернативных (во всяком случае, пока). В качестве отопительных приборов используются радиаторы, конвекторы или трубы. С появлением инфракрасных панелей, возможно, паровое отопление найдет новое применение.

Воздушные системы отопления

К воздушным системам относят системы, в которых теплоносителем является нагретый воздух. Они делятся на централизованные системы и локальные (местные).

Местные системы воздушного отопления

В локальных системах нагревание и подача воздуха производится непосредственно в отапливаемом помещении при помощи отопительных и отопительно-вентиляционных приборов.

По сути, в большинстве местных воздушных систем теплоноситель отсутствует (нет переноса тепловой энергии от источника тепла), поэтому к системам с воздушным теплоносителем их можно отнести лишь условно. Примером локальной системы воздушного отопления являются установленные в каждой комнате тепловентиляторы. Так же сюда относятся тепловые завесы, тепловые пушки и калориферы.

Центральные системы воздушного отопления

В централизованных системах воздух нагревается в воздухонагревательной установке и по каналам подается в помещения. В качестве топлива в таких системах можно использовать все виды энергоносителей. Альтернативные источники энергии используют как дополнительный источник тепла, чтобы сэкономить на отоплении (особенно в межсезонье), т.к. их мощности не хватит на полный обогрев.

Классификация центральных систем воздушного отопления:

По способу циркуляции воздуха:

  • Центральная система воздушного отопления с полной рециркуляцией
  • Центральная система воздушного отопления с частичной рециркуляцией и вентиляцией
  • Прямоточная центральная система воздушного отопления

Последние две могут быть:

  • Без рекуперации
  • С рекуперацией

По способу нагрева воздуха:

  • Системы воздушного отопления прямого нагрева
  • Системы воздушного отопления косвенного нагрева.

Достоинством централизованной системы воздушного отопления является то, что в одной системе можно реализовать отопление, вентиляцию, кондиционирование, очистку и увлажнение воздуха.

Системы воздушного отопления «теплый пол» и «теплые стены»

Принцип действия таких систем очень похож на водяные теплые полы (стены), только теплоносителем является воздух. Такие системы довольно экзотичны и встречаются редко. Но что-то в этой идее есть:)

Огневоздушное отопление

К этому виду отопления относятся печное и каминное отопление. В таком отоплении теплоноситель либо практически отсутствует, либо им являются горячие дымовые газы. Примерами тепловых агрегатов служат различного вида кирпичные (русская, шведка, голландка и т.д.) и металлические печи (буржуйки, Булерьян, Профессор Бутаков, «бубафоня», печь на отработке и пр.), открытые и закрытые камины. В зависимости от конструкции агрегата, топить можно практически чем угодно, лишь бы горело.

Системы отопления без теплоносителя

Электрические системы отопления

Большая часть систем без теплоносителя – электрические. В таких системах электрическая энергия, преобразуясь в тепловую, нагревает помещение, а не теплоноситель. К таким системам можно отнести тепловентиляторы и электроконвекторы, однако выше мы их отнесли к местному воздушному отоплению. Более показательными примерами будут электрические теплые полы, панельные инфракрасные обогреватели, инфракрасные излучатели и пленочные инфракрасные нагреватели (ПЛЭН).

Электрические теплые полы

Теплый электрический пол отличается от водяного тем, что его нагревательные элементы - это имеющие два слоя изоляции, экранированные одножильные или двужильные кабели. По сравнению с водяными, электрические теплые полы проще (и дешевле) при монтаже, не требуют дополнительного оборудования, просты в управлении.

Пленочные инфракрасные нагреватели (ПЛЭН)

В основе их работы лежит принцип нагрева элементов из карбона, которые запаяны в полимерную пленку. К характеристикам такой пленки следует отнести: прочность, влагонепроницаемость и термостойкость. Основные достоинства – быстрый монтаж, отсутствие дополнительного оборудования и коммуникаций (только электричество) и легкая регулировка.

Газовые ИК обогреватели и конвекторы

В этих приборах тепло вырабатывается при сгорании газо-воздушной смеси. Поэтому можно отнести их к огневоздушному отоплению без теплоносителя (тепло передается через твердую среду корпуса прибора). Конвекторы из-за способа теплообмена (конвекция) относятся так же к воздушному отоплению. Вот такая перекрестная классификация.

Инфракрасные газовые обогреватели

«Светлые» Процесс горения у светлых излучателей происходит непосредственно на излучающей поверхности, т.е. открыто. Обычно применяются в больших вентилируемых помещениях или на открытом пространстве.

«Темные» Процесс горения у темных излучателей происходит в полностью закрытом пространстве. Принцип таких излучателей состоит в том, что высокотемпературные продукты сгорания газа проходят внутри теплоизлучающих труб. Средняя температура на поверхности трубы составляет 450 - 500 °C.

Отопление представляет собой обогрев помещения в холодный период, возмещающий теплопотери и поддерживающий температуру на заданном уровне, а также отвечающий представлениям о тепловом комфорте и требованиям технологического процесса. Отопительная система включает в себя комплекс устройств, которые выполняют эту функцию.

Тепловой комфорт, в большой мере, определяет температура в помещении. Немаловажную роль играет равномерное распределение температур по всем направлениям. На него влияет вид отопительных приборов, их расположение, а также теплозащитные свойства и возможность проникновения наружного воздуха в помещение.

Мощность системы отопления должна обеспечивать максимальное возмещение теплопотерь в отопительный период при наружной температуре, равной средней температуре в наиболее холодную пятидневку в конкретном населенном пункте.

Самыми распространенными отопительными системами считаются водяные, электрические и газовые. Выбор определенного отопительного оборудования зависит от многих факторов.

Электрические системы отопления

Обогрев помещения, в котором устанавливается электрическое отопление, осуществляется без участия теплоносителя. Тепло преобразуется из электроэнергии. В России и странах СНГ электрический вид отопления считается наиболее перспективным, тогда как в Европе – наиболее популярным. На российской территории относительная дороговизна электроэнергии и регулярные перебои в ее подаче не позволяют эффективно использовать электричество как единственный источник питания. Кажется, что использование электрических отопительных систем чревато серьезными финансовыми затратами, однако, доскональные подсчеты предоставляет совершенно иную картину.

Преимущества электроотопления

  • легкость и удобство в эксплуатации;
  • небольшие размеры отопительных приборов и отсутствие необходимости специального ухода за ними;
  • возможность эффективного регулирования подачи тепла;
  • быстрота нагрева воздуха;
  • высокий уровень экологической чистоты и гигиеничности электрического оборудования;
  • низкий уровень шума системы отопления, так как ее функционирование не нуждается в использовании циркуляционных насосов;
  • эстетичность электрического оборудования;
  • легкий монтаж.

Недостатки электроотопления

  • высокие эксплуатационные расходы;
  • перебои электроэнергии вызывают нестабильность электрических систем.

Кроме прямого электрического отопления к электросистемам отопления относят теплый пол, радиаторы и конвекторы, инфракрасные обогреватели и кварцевые обогреватели.

В российских условиях электрические системы отопления разумно использовать в качестве резервного источника обогрева.

Водяные системы отопления

Водяные отопительные системы – самый распространенный вид централизованного и отопительного отопления. Данный вид отопления корректнее называть «традиционным», поскольку теплоносителем может быть не только вода, но и любая другая теплоемкая жидкость, отвечающая определенным физико-химическим требованиям.

Такой термин обуславливает широта распространения водяных отопительных систем. В подобных системах жидкий теплоноситель (в большинстве случаев аэрированная вода) нагревается до определенных температур, проходит по отопительным приборам и трубопроводам, осуществляя теплообмен с воздухом в помещении.

Преимущества водяного отопления

Популярность водяных систем отопления вызвано целым рядом их достоинств:

  • экономичный расход и дешевая стоимость материалов (при обустройстве водяных трубопроводов используются трубы меньшего диаметра, чем для воздушных);
  • высокая теплоемкость теплоносителей (в воде содержится гораздо больше тепла, чем в других теплоносителях, поскольку теплоемкость воды в 4000 раз выше, чем теплоемкость воздуха, нагретого до такой же температуры).

Недостатки водяного отопления

Основные недостатки водяных систем отопления по сравнению с другими видами искусственного обогрева помещения заключаются в трудоемкости его монтажа и дальнейшей эксплуатации. Связано это с тем, что обустройство водяных трубопроводов осуществляется только при возведении здания или его капитальном ремонте, поскольку необходимы сложные строительные работы.

Кроме того, бесперебойную работу водяных отопительных систем обеспечивает постоянный нагрев теплоносителя, то есть необходим непрерывный контроль над функционированием теплового генератора.

Неудобства использования традиционных систем отопления ожидают и тех, кто на долговременный период покидает свое жилище. Перед длительным отбытием всю воду из отопительной системы необходимо слить, так как при отрицательных температурах воздуха жидкость может замерзнуть, что вызовет разрыв трубопровода. Но и отсутствие воды в системе тоже не приветствуется, поскольку в заполненных воздухом трубах гораздо интенсивнее начнут протекать коррозионные процессы.

Газовые системы отопления

Газовые отопительные системы активно применяются в обустройстве отопления загородных домов, вблизи которых проложена газовая магистраль. Если к коттеджному поселку подведены газовые коммуникации, то монтажные организации в большинстве случаев предложат использовать именно газовую систему отопления, поскольку она обладает определенными достоинствами.

Преимущества газовых систем отопления

  • газ – самое дешевое топливо;
  • нет нужды в постоянном контроле над пламенем, так как газ подается беспрерывно. Если пламя по какой-то причине погаснет, датчик мгновенно известит систему электрического розжига, и горелка вновь зажжется.
  • КПД газовых отопительных систем очень высок, учитывая низкую стоимость топливного сырья;
  • газовые отопительные приборы позволяют отопить большие по площади помещения.

Недостатки газовых систем отопления

Для установки газового котельного оборудования необходимо согласование со службой Газтехнадзора. Для успешного результата согласования необходимо предоставление проекта котельной, с монтажной и обслуживающей фирмой, копии разрешения на проектные и монтажные работы выбранной организации, а также заключение трехстороннего договора об обязанностях и ответственности по оборудованию.

При решении применения газового оборудования для отопления необходимо предусмотреть наличие дымохода, через который будут отводиться отработанные газы. Установка газовой котельной должна производиться в отдельном помещении с отдельным выходом на улицу и хорошим снабжением воздухом. Особенно это актуально при использовании оборудования с атмосферной горелкой.

Понижение давления газа и износ горелки может стать причиной того, что отопительное оборудование начнет коптить, а его КПД значительно снизится.

При небольшой площади дома (менее 100 кв.м.) применение газового оборудования становится экономически не выгодным, да и нежелательным из-за его невысокой экологической безопасности.

В атмосферной горелке пламя открыто, что для некоторых людей является сдерживающим фактором из-за отсутствия должной безопасности.

Необходимо применять газовое оборудование, адаптированное под российские условия. Давление газа может значительно изменяться. Достигнув определенного минимума, горелка неадаптированного импортного котла может начать сжигать себя, что станет причиной поломки газового котельного оборудования.

Нужен монтаж автоматики, которая будет следить за утечками газа.

Выбор радиатора и способы повышения теплоотдачи

Любой отопительный радиатор состоит из секций. Их количество зависит от характеристик помещения, которое необходимо обогревать. Для этого необходимо учесть множество нюансов:

  • размеры помещения;
  • материал, из которого возведен дом;
  • наличие в помещении стеклопакетов;
  • количество наружных стен и окон;
  • насколько утеплены наружные стены;

Часто, выбирая радиатор, отталкиваются от упрощенной формулы, которая гласит, что на 2м2 площади необходима 1 секция батареи плюс 1 дополнительная секция на все помещение, которая позволит не замерзнуть при открытой двери или холодными стенами

При выборе радиатора, необходимо обращать внимание на материал, из которого он сделан. Ведь именно облицовка влияет на теплоотдачу. Исходя из этого, радиатор может быть алюминиевым, чугунным, биметаллическим или стальным. Их отличает тепловая мощность и рабочее давление.

Для повышения теплоотдачи необходимо, чтобы:

  • регулирующий вентиль был легко доступным;
  • высота расположенных спереди приточных отверстий и отверстий, через которые идет нагретый воздух, должна быть равна глубине отопительного элемента, а длина – длине отопительного прибора;
  • высота и ширина верхних отверстий для теплого воздуха должны быть больше или равны аналогичным значениям самого отопительного оборудования;
  • большое свободное сечение решеток должно быть не менее 50% от всего сечения решетки;
  • облицовка должна обладать небольшим весом и легко сниматься.

Необходимо учитывать, что органические краски не оказывают практически никакого влияния на излучение. Наоборот, такая окраска способствует повышению излучательной способности по сравнению с неокрашенной поверхностью.

Грамотно подобранное оборудования обеспечивает не только максимальную эффективность отопительной системы, но и позволяет снизить финансовые затраты во время его эксплуатации и сформировать комфортный микроклимат любого помещения. Окончательный выбор той или иной отопительной системы нужно принимать только после консультаций со специальности в данной области.

Мало у кого вызывает сомнение тот факт, что цена на энергоносители со временем будет расти. По прогнозам аналитиков, уже в ближайшие годы можно ожидать повышения тарифов до европейского уровня. В связи с этим вопрос выбора наиболее экономичного варианта теплоснабжения становится все более актуальным. А если учесть, что отопительная система должна не только быть финансово доступной, но и максимально соответствовать современным представлениям о комфортном жилье, альтернатив остается немного.

Теплый пол.

Самое проверенное решение - устройство теплых полов. Теплый пол - не современное изобретение. Еще в Древнем Риме в полах дворцов прокладывали каналы для пропуска горячего воздухом от печей. В первой половине 19 века начали испошользоывать системы водяного отопления. Ну а в наши дни системы теплого пола используются в очень многих зданиях, особенно часто в частных домах и квартирах. Теплые полы чаще всего устанавливают в ванных, кухнях, прихожих, там, где обычно уложена керамическая плитка - материал с хорошей теплопроводностью. Также теплые полы могут быть уложены под паркетом или ламинатом, но все эти материалы хуже чем плитка пропускают тепло, соответственно КПД системы обогрева будет ниже. Кроме этого паркет может рассыхаться, а линолеум или другие полимерные покрытия быстрее изнашиваться под воздействием повышенной температуры теплого пола.

Сейчас есть два основных способа устройства теплого пола - с использованием труб с теплоносителем либо электрических греющих кабелей. У каждого способа есть преимущества и недостатки.

Преимущества электрических теплых полов - быстрая и недорогая установка, которую может осуществить любой строитель, малая толщина "пирога" пола (1-3 см) при монтаже. Однако экономия при установке быстро сойдет на нет из-за дорогой эксплуатации. Электропотребления одного квадратного метра теплого пола 0,15 кВт/ч. Это не так мало, учитывая, почти круглосуточную и круглогодичную работу.

Водяные теплые полы экономичные, но требуют более сложного монтажа, дополнительного оборудования и примерно на 7-10 сантиметров увеличивают стяжку пола. Монтаж следует поручать профессионалам, которые проведут испытания и пусконаладку системы. В загородных домах, где теплый пол может использоваться на больших площадях он имеет огромное денежное преимущество перед электрическим.

Если все упростить, то выбор между водяным и электрическим теплым полом зависит от площади обогрева: если нужно обогреть маленькую площадь - лучше и проще использовать электрический пол, а если обогреть теплыми полами нужно целый дом, то выбор за экономичными водяными теплыми полами.

При кабельном обогреве "теплый пол" в тепло преобразуется электрическая энергия. Обычные провода из меди или алюминия служат для того, чтобы электричество передавать, при этом существует некоторый (очень маленький) коэффициент нагрева, а в кабеле "теплый пол", напротив, нагревательная жила сделана из сплавов высокого сопротивления и главная ее функция – при прохождении через нее электричества – нагреваться.

При обогреве водяным теплым полом источником тепла служит нагретый теплоноситель, как правило, это вода из горячего стояка или из системы отопления, которая проходит по трубам в полу.

При прочих равных обстоятельствах в выборе между теплым полом водяным и теплым полом электрическим аргументом в защиту электрического пола служит следующий довод: не надо устанавливать водяной насос для принудительной циркуляции воды по трубам в полу. Ведь для того, чтобы получить относительно низкую температуру пола при работе водяного теплого пола, нужен смесительный узел, а он не может функционировать без водяного насоса. Смонтировать же водяной теплый пол с естественной (гравитационной) циркуляцией теплоносителя достаточно проблематично, к тому же площадь теплого пола при такой конструкции будет невелика.

Есть также любопытное мнение медиков по проблеме слишком теплого водяного пола: из-за большой теплоотдачи такой теплый пол на кухне может "перевесить" все отопление в квартире. Как результат – слишком тепло, и, что гораздо страшнее, – слишком сухо. Влажность может падать зимой до 10-15%. А это чревато пересыханием слизистой носоглотки и однозначными ОРЗ. «Все хорошо, что в меру», – говорят врачи.

Однако при всех очевидных плюсах и теплый пол электрический не лишен своих недостатков, а именно:

Повышение расходов на оплату электроэнергии;

Наличие незначительных электромагнитных излучений.

Что касается электромагнитных излучений, то они действительно есть. Вопрос только в их количестве. Двужильный теплый пол выделяет излучений гораздо меньше, чем одножильный теплый пол.

Сокращение излучений происходит за счет того, что в двужильном нагревательном кабеле проходит вторая питающая жила и электрические потоки, идя как бы навстречу друг другу, гасят встречные колебания. В тонком теплом полу (нагревательном мате) встречные колебания гасятся за счет близкого расположения соседних витков (шаг 5 см).

Таким образом, можно обобщить все вышесказанное так:

Основные достоинства водяного теплого пола:

Возможность обогрева больших площадей малыми средствами;

Единовременные затраты при установке и существенная экономия в оплате электроэнергии в дальнейшем.

Основные недостатки водяного теплого пола:

Конструктивные сложности при монтаже;

Необходимость применения водяного насоса;

Сложность управления температурой пола;

Снижение давления в стояке;

Некоторая вероятность протечки и трудность ее поиска;

Административные сложности и запреты.


Основные достоинства электрического теплого пола:

Визуальное отсутствие отопительных приборов;

Возможность установки в типовых квартирах без применения специального оборудования;

Равномерный прогрев пола по всей площади;

Легко контролируемый и физиологически оптимальный прогрев помещения;

Простота и дешевизна регулирования температуры пола;

Возможность локального поиска и ремонта неисправности.

Основные недостатки электрического теплого пола:

Высокие расходы на оплату электричества;

Наличие некоторого количества электромагнитных излучений.

Радиаторные системы отопления.

Основные схемы радиаторных систем отопления.

Водяное радиаторное отопление получило в настоящее время наибольшее распространение. Опыт эксплуатации водяных радиаторных систем показал их высокие гигиенические и эксплуатационные показатели. Радиаторные системы водяного отопления обладают высокой надежностью, бесшумны, просты и удобны в эксплуатации, могут иметь значительную протяженность. По вертикали радиус действия системы определяется гидростатическим давлением. Особое значение получило водяное отопление с развитием централизованного теплоснабжения и теплофикации.

Системы водяного отопления радиаторами классифицируются по нескольким признакам. По способу создания циркуляции водяные радиаторные системы делятся на системы с естественной циркуляцией (гравитационные) и с искусственной циркуляцией (насосные ). В системах с естественной циркуляцией движение воды осуществляется за счет разности плотностей горячей воды, поступающей в систему, и охлажденной воды после нагревательных приборов.

Рис. 1. Система водяного отопления с естественной циркуляцией.

2 - расширительный бак;

3 - отопительные приборы.

В системах с искусственной циркуляцией движение воды происходит за счет перепада давления создаваемого насосом.

В зависимости от схемы соединения труб с нагревательными приборами системы водяного отопления делятся на двухтрубные и однотрубные . В двухтрубной системе (рис. 2, 3) каждый нагревательный прибор присоединяется к двум трубам: по одной подводится горячая вода, а по другой уходит охлажденная вода, при этом все отопительные приборы оказываются принципиально паралельны и равноправны по отношению друг другу. В однотрубных системах отопления (рис. 4, 5) нагревательные приборы одной ветви соединяются одной трубой так, что вода последовательно перетекает из одного прибора в другой.

В зависимости от места прокладки магистральных трубопроводов системы подразделяются на системы с верхней разводкой (см. рис. 2), если горячая магистраль прокладывается выше нагревательных приборов, и системы с нижней разводкой (см. рис. 3), когда горячая и обратная магистрали лежат ниже приборов.

Рис. 2. Двухтрубная вертикальная система водяного отопления с верхней разводкой.

1 - подающая магистраль;

2 - подающий стояк;

3 - стояк обратной линии;

4 - регулирующий кран.

На рисунке 2 приведена схема вертикальной двухтрубной системы отопления с верхней разводкой с односторонним и двухсторонним присоединением нагревательных приборов. Горячая вода из теплового пункта подается в главный стояк, затем по горизонтальной магистрали разводится к стоякам и от них к нагревательным приборам. Охлажденная вода из нагревательных приборов собирается в общий обратный стояк и далее через обратную магистраль поступает в тепловой пункт. Горизонтальные магистрали прокладываются с уклоном 0,002. Уклоны горизонтальных труб должны обеспечить выход воздуха из системы к верхним точкам, где он будет удален через воздухоотводчик.

По расположению труб, соединяющих нагревательные приборы, системы делятся на вертикальные , когда приборы присоединяются к вертикальному стояку (рис. 3), и горизонтальные (рис. 6, 7), когда приборы присоединяются к горизонтально расположенным трубопроводам.

Рис. 3 Двухтрубная вертикальная система водяного отопления с нижней разводкой.

1 - подающая магистраль;

2 - подающий стояк;

3 - стояк обратной линии;

4 - краны у приборов;

5 - нагревательные приборы;

6 - выпуск воздуха;

7 - обратная магистраль.

В системе с нижней разводкой магистральная линия располагается в нижней части системы. Движение воды по стоякам происходит снизу верх. Удаление воздуха из системы осуществляется через воздушные краны, устанавливаемые на верхних нагревательных приборах, или с помощью автоматических воздухоотводчиков, устанавливаемых на стояках или специальных воздушных линиях.

Рис. 4. Схема однотрубной системы отопления с верхней разводкой.

Рис. 5. Схема однотрубной системы отопления с нижней разводкой и П-образными стояками.

1 - подающая магистраль;

2 - нагревательный прибор;

3 - трехходовой кран;

4 - выпуск воздуха;

5 - регулирующий кран;

6 - обратная магистраль.

Рис. 6. Схема горизонтальной однотрубной системы отопления.

2 - нагревательные приборы;

3 - регулирующий кран;

4 - выпуск воздуха;

5 - обратная магистраль.

Однотрубные системы в настоящее время применяются довольно широко, особенно в зданиях повышенной этажности. По сравнению с двухтрубными системами длина труб однотрубной системы составляет 70-75 %. Однотрубные системы выполняются с верхней и с нижней разводкой. Кроме того, они подразделяются на три типа в зависимости от способа подключения приборов: проточные, проточные с нерегулируемым байпасом и проточные с регулируемым байпасом. Выпуск воздуха производится в верхних точках системы через автоматические воздухоотводчики или ручные краны.

Рис. 7. Схема горизонтальной двухтрубной системы отопления.

2 - нагревательные приборы;

3 - регулирующий кран;

4 - выпуск воздуха;

5 -регулирующая арматура;

6 - обратная магистраль.

Горизонтальные схемы применяются в зданиях большой протяженности. Магистрали горизонтальных схем прокладываются в удобных местах, обычно во вспомогательных помещениях. Горизонтальные системы бывают однотрубными и двухтрубными.

Рис. 8. Схема горизонтальной двухтрубной коллекторной системы отопления.

Системы с искусственной циркуляцией могут выполняться по нескольким схемам в зависимости от источника теплоснабжения.

Расчетная температура горячей воды в системах отопления жилых, общественных и административных помещений принимается равной 95 0С, в детских и лечебных учреждениях 85 0С. Температура обратной воды принимается обычно 700С.

В зависимости от источника теплоснабжения система может быть с индивидуальной котельной с общим теплоснабжением. При теплоснабжении от общей котельной или ТЭЦ применяются три схемы: независимая с тепловым узлом, со смешением воды, зависимая прямоточная.

Рис. 9. Схема системы отопления с индивидуальной котельной.

2 - циркуляционный насос;

3 - отопительный прибор;

4 - выпуск воздуха.

Рис. 10. Схема независимой системы отопления с тепловым узлом.

1 -тепловой узел;

2 - циркуляционный насос;

3 - нагревательные приборы;

4 - выпуск воздуха.

В независимой схеме вместо водогрейного котла устанавливается теплообменник, обогреваемый первичной водой из тепловой сети.

Рис.11. Схема зависимой системы отопления со смешением воды.

1 - подающая и обратная магистрали;

2 - подмес из обратной линии;

3 - нагревательные приборы;

4 - выпуск воздуха.

Зависимая схема со смешением воды применяется, когда необходимо ограничить температуру в системе отопления, но нет необходимости ограничивать давление.

Рис.12. Схема зависимой прямоточной системы отопления.

2 - выпуск воздуха;

3 - нагревательные приборы.

Зависимая схема применяется, когда нет необходимости ограничивать ни температуру, ни давление. Зависимые схемы проще, однако, регулирование системы отопления определяется регулированием тепловых сетей. Поэтому предпочтительнее системы с индивидуальной котельной или с индивидуальным тепловым пунктом.

При выборе схемы системы предпочтение отдается коллекторной поэтажной разводке, а также ее комбинациям с однотрубной (реже двухтрубной). Практически обязательным является создание принудительной циркуляции в системе, что достигается установкой одного или нескольких циркуляционных насосов. Это позволяет уменьшить разность температур теплоносителя на входе и выходе сети системы и тем самым повысить эффективность и регулируемость нагрева, а также избежать лишнего расхода материалов, упростить систему, сделать ее более компактной.

При расчете отопительных приборов необходимо помнить, что применение декоративных щитов снижает эффективную теплоотдачу в среднем на 10%.

При монтаже оборудования систем отопления, водоснабжения и канализации в помещениях необходимо соблюдать правильность расположения элементов в пространстве. Существуют общепринятые нормы, регламентирующие соответствующие размеры. Предпочтительно следование им во всех случаях, когда заранее не оговорены особые условия, связанные, как правило, с оригинальными дизайнерскими решениями или настойчивым желанием заказчика.

Распределительные шкафы системы отопления, как правило, располагаются на уровне пола соответствующего этажа (нижняя грань) – за исключением шкафа, устанавливаемого в котельной, который чаще всего поднимается выше уровня котла.

Схемы водоснабжения индивидуальных домов.

Существует две группы схем водоснабжения индивидуальных жилых домов:

Водоснабжение при подключении к централизованным водосистемам;

Создание местной (децентрализованной) системы водоснабжения.

Естественно, первая версия более простая, надежная, но есть маленькая заминка: не очень часто мы можем встретить вблизи загородного дома централизованный водопровод со всеми атрибутами (очистными сооружениями, насосной станцией и т.п.). Но если вам повезло, рассмотрим и этот случай. Но обратите внимание даже на одну важнейшую деталь: главное условие, при котором в вашем загородном доме может быть установлен водопровод – наличие возможности для сброса и обеззараживания сточных вод: водопровод и канализация неразделимы (в общем, должен быть полный комфорт).