Математическим моделированием называется. Лекция: Математическое моделирование

Проследить динамику развития объекта, внутреннюю сущность соотношений его элементов и различные со­стояния в процессе проектирования можно только с по­мощью моделей, использующих принцип динамической аналогии, т. е. с помощью математических моделей.

Математическая модель - это система математиче­ских соотношений, описывающих изучаемый процесс или явление. Для составления математической модели мож­но использовать любые математические средства - тео­рию множеств, математическую логику, язык дифферен­циальных или интегральных уравнений. Процесс состав­ления математической модели называется математическим моделированием . Как и другие виды моделей, ма­тематическая модель представляет задачу в упрощен­ном виде и описывает только свойства и закономер­ности, которые наиболее важны для данного объекта или процесса. Математическая модель позволяет осуществ­лять многосторонний количественный анализ. Изменяя исходные данные, критерии, ограничения, каждый раз можно получать оптимальное по заданным условиям ре­шение и определять дальнейшее направление поиска.

Создание математических моделей требует от их раз­работчиков, кроме знания формально-логических мето­дов, тщательного анализа изучаемого объекта с целью строгого формулирования основных идей и правил, а также с целью выявления достаточного объема досто­верных фактических, статистических и нормативных данных.

Следует отметить, что все используемые в настоя­щее время математические модели относятся к предпи­сывающим . Цель разработки предписывающих моде­лей - указание направления поиска решения, в то время как цель разработки описывающих моделей - отражение действительных процессов мышления человека.

Достаточно широко распространена точка зрения, что с помощью математики можно получить только некото­рые числовые данные по изучаемому объекту или про­цессу. «Разумеется, многие математические дисциплины направлены на получение конечного численного резуль­тата. Но сводить математические методы только к зада­че получения числа - значит бесконечно обеднять мате­матику, обеднять возможность того могучего оружия, которое сегодня есть в руках исследователей…

Математическая модель, записанная на том или ином частном языке (например, дифференциальные уравне­ния), отражает определенные свойства реальных физиче­ских процессов. В результате анализа математических моделей мы получаем, прежде всего, качественные пред­ставления об особенностях изучаемых процессов, уста­навливаем закономерности, определяющие динамический ряд последовательных состояний, получаем возможность предсказать течение процесса и определять его количе­ственные характеристики».

Математические модели используются во многих известных способах моделирования. Среди них можно назвать разработку моделей, описывающих статическое и динамическое состояние объекта, оптимизационные модели.

Примером математических моделей, описывающих статическое и динамическое состояние объекта, могут служить различные методы традиционных расчетов конструкций. Процесс расчета, представленный в виде последовательности математических операций (алгоритм), позволяет сказать, что составлена математическая модель для расчета определенной конструкции.

В оптимизационных моделях присутствуют три элемента:

Целевая функция, отражающая принятый критерий качества;

Регулируемые параметры;

Налагаемые ограничения.

Все эти элементы должны быть описаны математически в виде уравнений, логических условий и т.д. Решение оптимизационной задачи представляет собой процесс поиска минимального (максимального) значения целевой функции при соблюдении заданных ограничений. Результат решения считается оптимальным, если функция цели достигает своего экстремального значения.

Пример оптимизационной модели – математическое описание критерия «длина связи» в методике вариантного проектирования промышленных зданий.

Целевая функция отражает общую взвешенную протяженность всех функциональных связей, которая должны стремиться к минимуму:

где – весовое значение связи элемента с ;

– длина связи между и элементами;

– общее число размещаемых элементов.

Поскольку площади размещаемых элементов помещений во всех вариантах проектного решения равны, то варианты отличаются один от другого только различными расстояниями между элементами и их расположением относительно друг друга. Следовательно, регулируемыми параметрами служат в данном случае координаты элементов, размещаемых на планах этажей.

Налагаемые ограничения на расположение элементов (в заранее фиксированном месте плана, у наружного периметра, друг над другом и т.д.) и на длину связей (значения длины связей между и ым элементами заданы жестко, заданы минимальные или максимальные пределы значений, заданы границы изменения значений) записываются формально.

Вариант считается оптимальным (по данному критерию), если значение функции цели, вычисленной для этого варианта, будет минимальным.

Разновидность математических моделей – экономико-математическая модель – представляет собой модель связи экономических характеристик и параметров системы.

Примером экономико-математических моделей служит математическое описание критериев затрат в упомянутой выше методике вариантного проектирования промышленных зданий. В математических моделях, полученных на основе использования методов математической статистики, отражена зависимость стоимости каркаса, фундаментов, земляных работ одноэтажных и многоэтажных промышленных зданий и их высоты, пролета и шага несущих конструкций.

По способу учета влияния случайных факторов на принятие решения математические модели подразделяются на детерминированные и вероятностные. Детерминированная модель не учитывает влияние случайных факторов в процессе функционирования системы и основана на аналитическом представлении закономерностей функционирования. Вероятностная (стохастическая) модель учитывает влияние случайных факторов в процессе функционирования системы и основана на статистической, т.е. количественной оценке массовых явлений, позволяющей принимать в расчет их нелинейность, динамику, случайные возмущения, описываемые разными законами распределения.

Используя приведенные выше примеры, можно сказать, что математическая модель, описывающая критерий «длина связей», относится к детерминированным, а математические модели, описывающие группу критериев «затраты», - к вероятностным моделям.

Лингвистические, семантические и информационные модели

Математические модели имеют очевидные достоинства, так как количественная оценка аспектов задачи дает ясное представление о приоритетах целей. Немаловажно, что специалист всегда может обосновать принятие того или иного решения, представив соответствующие численные данные. Однако полное математическое описание проектной деятельности невозможно, поэтому большинство задач, решаемых на начальной стадии архитектурно-строительного проектирования, относится к слабоструктурированным .

Одна из особенностей слабоструктурированных задач - словесное описание используемых в них критериев. Введение критериев, описанных на естественном языке (такие критерии называют лингвистическими ), позволяет использовать менее сложные методы для поиска оптимальных проектных решений. При наличии таких критериев проектировщик принимает решение на основании привычных, не вызывающих сомнения выражениях целей.

Содержательное описание всех аспектов задачи вносит систематизацию в процесс ее решения, с одной стороны, а с другой, значительно облегчает работу специалистов, которые без изучения соответствующих разделов математики могут более рационально решать свои профессиональные задачи. На рис. 5.2 приведена лингвистическая модель , описывающая возможности создания условий для естественной вентиляции в различных вариантах планировочных решений хлебозавода.

Другие преимущества содержательного описания проблем заключаются в следующем:

Возможность описания всех критериев, которыми определяется эффективность проектного решения. При этом важно, что в описание могут быть введены слож­ные понятия и в поле зрения специалиста наряду с ко­личественными, измеряемыми факторами попадут и ка­чественные, не измеряемые. Таким образом, на момент принятия решения будет использована вся субъективная и объективная информация;


Рис. 5.2 Описание содержания критерия «вентиляция» в виде лингвистической модели

Возможность однозначной оценки степени достижения цели в вариантах по данному признаку на основе фор­мулировок, принятых специалистами, что обеспечивает достоверность полученной информации;

Возможность учета неопределенности, связанной с не­полным знанием всех последствий принимаемых реше­ний, а так же информации прогнозного характера.

К моделям, которые используют естественный язык для описания объекта исследования, относятся и семан­тические модели.

Семантическая модель - есть такое представление объекта, при котором отражается степень взаимосвязан­ности (близости) между различными составными частя­ми, аспектами, свойствами объекта. Под взаимосвязан­ностью понимается не относительное пространственное расположение, а связь по смыслу.

Так, в семантическом смысле связь между коэффи­циентом естественной освещенности и площадью света прозрачных ограждений будет представлена как более близкая, чем связь между оконными проемами и смеж­ными с ними глухими участками стены.

Совокупность отношений связанности показывает, что представляет собой каждый выделяемый в объекте эле­мент и объект в целом. В то же время семантическая модель отображает помимо степени связанности различ­ных сторон в объекте также содержание понятий. Элементарными моделями служат понятия, выраженные естественным языком.

Построение семантических моделей основывается на принципах, в соответствии с которыми понятия и связи не изменяются в течение всего времени использования модели; содержание одного понятия не переходит в дру­гое; связи между двумя понятиями имеют равное по отношению к ним и неориентированное взаимодействие.

Каждый анализ модели направлен на выбор элемен­тов модели, имеющих общее определенное качество. Это дает основание для построения алгоритма, учитывающе­го только непосредственные связи. При преобразовании модели в неориентированный граф ищется путь между двумя элементами, который прослеживает движение из одного элемента в другой, с использованием каждого элемента только один раз. Порядок следования элемен­тов называется последовательностью этих двух элемен­тов. Последовательности могут иметь разную длину. Самые короткие из них называются отношениями эле­ментов. Последовательность двух элементов существует и в том случае, если между ними существует непосред­ственная связь, но в таком случае не существует от­ношения.

В качестве примера семантической модели приведем описание планировки квартиры вместе с коммуникацион­ными связями. Понятие - это помещения квартиры. Не­посредственная связь означает функциональное соедине­ние двух помещений, например дверью (см. табл. 5.1).

Преобразование модели в форму неориентированного графа позволяет получить последовательность элементов (рис. 5.3).

Примеры последовательности, образованной между элементом 2 (ванная) и элементом 6 (кладовая), приведены в табл. 5.2. Как видно из таблицы, последовательность 3 пред­ставляет отношение этих двух элементов.

Таблица 5.1

Описание планировки квартиры


Рис. 5.3 Описание планировочного решения в виде неориентирован­ного графа

Для построения математической модели необходимо:

  1. тщательно проанализировать реальный объект или процесс;
  2. выделить его наиболее существенные черты и свойства;
  3. определить переменные, т.е. параметры, значения которых влияют на основные черты и свойства объекта;
  4. описать зависимость основных свойств объекта, процесса или системы от значения переменных с помощью логико-математических соотношений (уравнения, равенства, неравенства, логико-математические конструкций);
  5. выделить внутренние связи объекта, процесса или системы с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций;
  6. определить внешние связи и описать их с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций.

Математическое моделирование, кроме исследования объекта, процесса или системы и составления их математического описания, также включает:

  1. построение алгоритма, моделирующего поведение объекта, процесса или системы;
  2. проверка адекватности модели и объекта, процесса или системы на основе вычислительного и натурного эксперимента;
  3. корректировка модели;
  4. использование модели.

Математическое описание исследуемых процессов и систем зависит от:

  1. природы реального процесса или системы и составляется на основе законов физики, химии, механики, термодинамики, гидродинамики, электротехники, теории пластичности, теории упругости и т.д.
  2. требуемой достоверности и точности изучения и исследования реальных процессов и систем.

Построение математической модели обычно начинается с построения и анализа простейшей, наиболее грубой математической модели рассматриваемого объекта, процесса или системы. В дальнейшем, в случае необходимости, модель уточняется, делается ее соответствие объекту более полным.

Возьмем простой пример. Нужно определить площадь поверхности письменного стола. Обычно для этого измеряют его длину и ширину, а затем перемножают полученные числа. Такая элементарная процедура фактически обозначает следующее: реальный объект (поверхность стола) заменяется абстрактной математической моделью – прямоугольником. Прямоугольнику приписываются размеры, полученные в результате измерения длины и ширины поверхности стола, и площадь такого прямоугольника приближенно принимается за искомую площадь стола. Однако модель прямоугольника для письменного стола – это простейшая, наиболее грубая модель. При более серьезном подходе к задаче прежде, чем воспользоваться для определения площади стола моделью прямоугольника, эту модель нужно проверить. Проверки можно осуществить следующим образом: измерить длины противоположных сторон стола, а также длины его диагоналей и сравнить их между собой. Если, с требуемой степенью точности, длины противоположных сторон и длины диагоналей попарно равны между собой, то поверхность стола действительно можно рассматривать как прямоугольник. В противном случае модель прямоугольника придется отвергнуть и заменить моделью четырехугольника общего вида. При более высоком требовании к точности может возникнуть необходимость пойти в уточнении модели еще дальше, например, учесть закругления углов стола.

С помощью этого простого примера было показано, что математическая модель не определяется однозначно исследуемым объектом, процессом или системой .

ИЛИ (надо завтра уточнить)

Пути решения мат. Модели:

1, Построение м. на основе законов природы (аналитич. Метод)

2. Формальный путь с помощью статистическ. Обработки и результатов измерения (статист. Подход)

3. Построение м. на основе модели элементов (сложных систем)

1, Аналитический – использование при достаточном изуч. Общей закономерности изв. Моделей.

2. эксперимент. При отсутствии информ.

3. Имитационная м. – исследует св-ва объекта сст. В целом.


Пример построения математической модели.

Математи́ческая моде́ль - это математическое представление реальности.

Математическое моделирование - это процесс построения и изучения математических моделей.

Все естественные и общественные науки, использующие математический аппарат, по сути занимаются математическим моделированием: заменяют объект его математической моделью и затем изучают последнюю. Связь математической модели с реальностью осуществляется с помощью цепочки гипотез, идеализаций и упрощений. С помощью математических методов описывается, как правило, идеальный объект, построенный на этапе содержательного моделирования.

Зачем нужны модели?

Очень часто при исследовании какого либо объекта возникают трудности. Сам оригинал порой бывает недоступен, или его использование не целесообразно, или привлечение оригинала требует больших затрат. Все эти проблемы можно решить с помощью моделирования. Модель в определенном смысле может заменить исследуемый объект.

Простейшие примеры моделей

§ Фотографию можно назвать моделью человека. Для того чтобы узнать человека, достаточно видеть его фотографию.

§ Архитектор создал макет нового жилого района. Он может движением руки переместить высотное здание из одной части в другую. В реальности это было бы не возможно.

Типы моделей

Модели можно разделить на материальные" и идеальные . выше приведенные примеры являются материальными моделями. Идеальные модели часто имеют знаковую форму. Реальные понятия заменяются при этом некоторыми знаками, котое можно легко зафиксировать на бумаге, в памяти компьютера и т.д.

Математическое моделирование

Математическое моделирование относится к классу знакового моделирования. При этом модели могу создаваться из любых математических объектов: чисел, функций, уравнений и т.д.

Построение математической модели

§ Можно отметить несколько этапов построения математической модели:

1. Осмысление задачи, выделение наиболе важных для нас качеств, свойств, велечин и параметров.

2. Введение обозначений.

3. Составление системы ограничений, которым должны удовлетворять введенные величины.

4. Формулировка и запись условий,которым должно удовлетворять искомое оптимальное решение.

Процесс моделирования не заканчивается составлением модели,а только имначинается. Составив модель, выбирают метод нахождения ответа, решают задачу. после того как ответ найден сопостовляют его с реальностью. И возможно что ответ не удовлетворяет, в этом случае модель видоизменяют или даже выбирают совсем другую модель.

Пример математической модели

Задача

Производственное объединение, в которое входят две мебельные фабрики, нуждается в обновлении парка станков. Причем первой мебельной фабрике нужно заменить три станка, а второй-семь. Заказы можно разместить на двух станкостроительных заводах. Первый завод может изготовить не более 6 станков, а второй завод примет заказ если их будет не мение трех. Требуется определить как размещать заказы.

Начальный уровень

Математические модели на ОГЭ и ЕГЭ (2019)

Понятие математической модели

Представь себе самолет: крылья, фюзеляж, хвостовое оперение, все это вместе – настоящий огромный, необъятный, целый самолет. А можно сделать модель самолета, маленькую, но все как взаправду, те же крылья и т.д., но компактный. Так же и математическая модель. Есть текстовая задача, громоздкая, на нее можно так посмотреть, прочесть, но не совсем понять, и уж тем более не ясно как решать ее. А что если сделать из большой словесной задачи ее маленькую модель, математическую модель? Что значит математическую? Значит, используя правила и законы математической записи, переделать текст в логически верное представление при помощи цифр и арифметических знаков. Итак, математическая модель – это представление реальной ситуации с помощью математического языка.

Начнем с простого: Число больше числа на. Нам нужно записать это, не используя слов, а только язык математики. Если больше на, то получается, что если мы из вычтем, то останется та самая разность этих чисел равная. Т.е. или. Суть понял?

Теперь посложнее, сейчас будет текст, который ты должен попробовать представить в виде математической модели, пока не читай, как это сделаю я, попробуй сам! Есть четыре числа: , и. Произведение и больше произведения и в два раза.

Что получилось?

В виде математической модели выглядеть это будет так:

Т.е. произведение относится к как два к одному, но это можно еще упросить:

Ну ладно, на простых примерах ты понял суть, я так полагаю. Переходим к полноценным задачам, в которых эти математические модели еще и решать нужно! Вот задача.

Математическая модель на практике

Задача 1

После дождя уровень воды в колодце может повыситься. Мальчик измеряет время падения небольших камешков в колодец и рассчитывает расстояние до воды по формуле, где - расстояние в метрах, - время падения в секундах. До дождя время падения камешков составляло с. На сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с? Ответ выразите в метрах.

О, ужас! Какие формулы, что за колодец, что происходит, что делать? Я прочел твои мысли? Расслабься, в задачах этого типа условия бывают и пострашнее, главное помнить, что тебя в этой задаче интересуют формулы и отношения между переменными, а что все это обозначает в большинстве случаев не очень важно. Что ты тут видишь полезного? Я лично вижу. Принцип решения этих задач следующий: берешь все известные величины и подставляешь. НО, задумываться иногда надо!

Последовав моему первому совету, и,подставив все известные в уравнение, получим:

Это я подставил время секунды, и нашел высоту, которую пролетал камень до дождя. А теперь надо посчитать после дождя и найти разницу!

Теперь прислушайся ко второму совету и задумайся, в вопросе уточняется, «на сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с». Сразу надо прикинуть, тааак, после дождя уровень воды повышается, значит, время падения камня до уровня воды меньше и тут витиеватая фраза «чтобы измеряемое время изменилось» приобретает конкретный смысл: время падения не увеличивается, а сокращается на указанные секунды. Это означает, что в случае броска после дождя, нам просто нужно из начального времени c вычесть с, и получим уравнение высоты, которую камень пролетит после дождя:

Ну и наконец, чтобы найти, на сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с., нужно просто вычесть из первой высоты падения вторую!

Получим ответ: на метра.

Как видишь, ничего сложного нет, главное, особо не заморачивайся, откуда такое непонятное и порой сложное уравнение в условиях взялось и что все в нем означает, поверь на слово, большинство этих уравнений взяты из физики, а там дебри похлеще, чем в алгебре. Мне иногда кажется, что эти задачи придуманы, чтоб запугать ученика на ЕГЭ обилием сложных формул и терминов, а в большинстве случаев не требуют почти никаких знаний. Просто внимательно читай условие и подставляй известные величины в формулу!

Вот еще задача, уже не по физике, а из мира экономической теории, хотя знаний наук кроме математики тут опять не требуется.

Задача 2

Зависимость объёма спроса (единиц в месяц) на продукцию предприятия-монополиста от цены (тыс. руб.) задаётся формулой

Выручка предприятия за месяц (в тыс. руб.) вычисляется по формуле. Определите наибольшую цену, при которой месячная выручка составит не менее тыс. руб. Ответ приведите в тыс. руб.

Угадай, что сейчас сделаю? Ага, начну подставлять то, что нам известно, но, опять же, немного подумать все же придется. Пойдем с конца, нам нужно найти при котором. Так, есть, равно какому-то, находим, чему еще равно это, а равно оно, так и запишем. Как ты видишь, я особо не заморачиваюсь о смысле всех этих величин, просто смотрю из условий, что чему равно, так тебе поступать и нужно. Вернемся к задаче, у тебя уже есть, но как ты помнишь из одного уравнения с двумя переменными ни одну из них не найти, что же делать? Ага, у нас еще в условии осталась неиспользованная частичка. Вот, уже два уравнения и две переменных, значит, теперь обе переменные можно найти - отлично!

– такую систему решить сможешь?

Решаем подстановкой, у нас уже выражена, значит, подставим ее в первое уравнение и упростим.

Получается вот такое квадратное уравнение: , решаем, корни вот такие, . В задании требуется найти наибольшую цену, при которой будут соблюдаться все те условия, которые мы учли, когда систему составляли. О, оказывается это было ценой. Прикольно, значит, мы нашли цены: и. Наибольшую цену, говорите? Окей, наибольшая из них, очевидно, ее в ответ и пишем. Ну как, сложно? Думаю, нет, и вникать не надо особо!

А вот тебе и устрашающая физика, а точнее еще одна задачка:

Задача 3

Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому, где - мощность излучения звезды, - постоянная, - площадь поверхности звезды, а - температура. Известно, что площадь поверхности некоторой звезды равна, а мощность её излучения равна Вт. Найдите температуру этой звезды в градусах Кельвина.

Откуда и понятно? Да, в условии написано, что чему равно. Раньше я рекомендовал все неизвестные сразу подставлять, но здесь лучше сначала выразить неизвестное искомое. Смотри как все просто: есть формула и в ней известны, и (это греческая буква «сигма». Вообще, физики любят греческие буквы, привыкай). А неизвестна температура. Давай выразим ее в виде формулы. Как это делать, надеюсь, знаешь? Такие задания на ГИА в 9 классе обычно дают:

Теперь осталось подставить числа вместо букв в правой части и упростить:

Вот и ответ: градусов Кельвина! А какая страшная была задача, а!

Продолжаем мучить задачки по физике.

Задача 4

Высота над землей подброшенного вверх мяча меняется по закону, где - высота в метрах, - время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее трех метров?

То были всё уравнения, а вот здесь надо определить, сколько мяч находился на высоте не менее трех метров, это значит на высоте. Что мы составлять будем? Неравенство, именно! У нас есть функция, которая описывает как летит мяч, где – это как раз та самая высота в метрах, нам нужна высота. Значит

А теперь просто решаешь неравенство, главное, не забудь поменять знак неравенства с больше либо равно на меньше, либо равно, когда будешь умножать на обе части неравенства, чтоб перед от минуса избавиться.

Вот такие корни, строим интервалы для неравенства:

Нас интересует промежуток, где знак минус, поскольку неравенство принимает там отрицательные значения, это от до оба включительно. А теперь включаем мозг и тщательно думаем: для неравенства мы применяли уравнение, описывающее полет мяча, он так или иначе летит по параболе, т.е. он взлетает, достигает пика и падает, как понять, сколько времени он будет находиться на высоте не менее метров? Мы нашли 2 переломные точки, т.е. момент, когда он взмывает выше метров и момент, когда он, падая, достигает этой же отметки, эти две точки выражены у нас в виде времени, т.е. мы знаем на какой секунде полета он вошел в интересующую нас зону (выше метров) и в какую вышел из нее (упал ниже отметки в метра). Сколько секунд он находился в этой зоне? Логично, что мы берем время выхода из зоны и вычитаем из него время вхождения в эту зону. Соответственно: - столько он находился в зоне выше метров, это и есть ответ.

Так уж тебе повезло, что больше всего примеров по этой теме можно взять из разряда задачек по физике, так что лови еще одну, она заключительная, так что поднапрягись, осталось совсем чуть-чуть!

Задача 5

Для нагревательного элемента некоторого прибора экспериментально была получена зависимость температуры от времени работы:

Где - время в минутах, . Известно, что при температуре нагревательного элемента свыше прибор может испортиться, поэтому его нужно отключить. Найдите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ выразите в минутах.

Действуем по отлаженной схеме, все, что дано, сперва выписываем:

Теперь берем формулу и приравниваем ее к значению температуры, до которой максимально можно нагреть прибор пока он не сгорит, то есть:

Теперь подставляем вместо букв числа там, где они известны:

Как видишь, температура при работе прибора описывается квадратным уравнением, а значит, распределяется по параболе, т.е. прибор нагревается до какой-то температуры, а потом остывает. Мы получили ответы и, следовательно, при и при минутах нагревания температура равна критической, но между и минутами - она еще выше предельной!

А значит, отключить прибор нужно через минуты.

МАТЕМАТИЧЕСКИЕ МОДЕЛИ. КОРОТКО О ГЛАВНОМ

Чаще всего математические модели используются в физике: тебе ведь наверняка приходилось запоминать десятки физических формул. А формула – это и есть математическое представление ситуации.

В ОГЭ и ЕГЭ есть задачи как раз на эту тему. В ЕГЭ (профильном) это задача номер 11 (бывшая B12). В ОГЭ – задача номер 20.

Схема решения очевидна:

1) Из текста условия необходимо «вычленить» полезную информацию – то, что в задачах по физике мы пишем под словом «Дано». Этой полезной информацией являются:

  • Формула
  • Известные физические величины.

То есть каждой букве из формулы нужно поставить в соответствие определенное число.

2) Берешь все известные величины и подставляешь в формулу. Неизвестная величина так и остается в виде буквы. Теперь нужно только решить уравнение (обычно, довольно простое), и ответ готов.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье - 299 руб.
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - 999 руб.

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Во втором случае мы подарим тебе тренажер “6000 задач с решениями и ответами, по каждой теме, по всем уровням сложности”. Его точно хватит, чтобы набить руку на решении задач по любой теме.

На самом деле это намного больше, чем просто тренажер - целая программа подготовки. Если понадобится, ты сможешь ею так же воспользоваться БЕСПЛАТНО.

Доступ ко всем текстам и программам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Математическое моделирование

1. Что такое математическое моделирование?

С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т. д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.

Математическая модель - это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования - исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование - это еще и метод познания окружающего мира, дающий возможность управлять им.

Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

2. Основные этапы математического моделирования

1) Построение модели . На этом этапе задается некоторый «нематематический» объект - явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель . На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

3. Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие - как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф - это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

4. Примеры математических моделей

1) Задачи о движении снаряда.

Рассмотрим следующую задачу механики.

Снаряд пущен с Земли с начальной скоростью v 0 = 30 м/с под углом a = 45° к ее поверхности; требуется найти траекторию его движения и расстояние S между начальной и конечной точкой этой траектории.

Тогда, как это известно из школьного курса физики, движение снаряда описывается формулами:

где t - время, g = 10 м/с 2 - ускорение свободного падения. Эти формулы и дают математическую модель поставленной задачи. Выражая t через x из первого уравнения и подставляя во второе, получим уравнение траектории движения снаряда:

Эта кривая (парабола) пересекает ось x в двух точках: x 1 = 0 (начало траектории) и (место падения снаряда). Подставляя в полученные формулы заданные значения v0 и a, получим

ответ: y = x – 90x 2 , S = 90 м.

Отметим, что при построении этой модели использован ряд предположений: например, считается, что Земля плоская, а воздух и вращение Земли не влияют на движение снаряда.

2) Задача о баке с наименьшей площадью поверхности.

Требуется найти высоту h 0 и радиус r 0 жестяного бака объема V = 30 м 3 , имеющего форму закрытого кругового цилиндра, при которых площадь его поверхности S минимальна (в этом случае на его изготовление пойдет наименьшее количество жести).

Запишем следующие формулы для объема и площади поверхности цилиндра высоты h и радиуса r:

V = p r 2 h, S = 2p r(r + h).

Выражая h через r и V из первой формулы и подставляя полученное выражение во вторую, получим:

Таким образом, с математической точки зрения, задача сводится к определению такого значения r, при котором достигает своего минимума функция S(r). Найдем те значения r 0 , при которых производная

обращается в ноль:Можно проверить, что вторая производная функции S(r) меняет знак с минуса на плюс при переходе аргумента r через точку r 0 . Следовательно, в точке r0 функция S(r) имеет минимум. Соответствующее значение h 0 = 2r 0 . Подставляя в выражение для r 0 и h 0 заданное значение V, получим искомый радиус и высоту

3) Транспортная задача.

В городе имеются два склада муки и два хлебозавода. Ежедневно с первого склада вывозят 50 т муки, а со второго - 70 т на заводы, причем на первый - 40 т, а на второй - 80 т.

Обозначим через a ij стоимость перевозки 1 т муки с i-го склада на j-й завод (i, j = 1,2). Пусть

a 11 = 1,2 р., a 12 = 1,6 р., a 21 = 0,8 р., a 22 = 1 р.

Как нужно спланировать перевозки, чтобы их стоимость была минимальной?

Придадим задаче математическую формулировку. Обозначим через x 1 и x 2 количество муки, которое надо перевезти с первого склада на первый и второй заводы, а через x 3 и x 4 - со второго склада на первый и второй заводы соответственно. Тогда:

x 1 + x 2 = 50, x 3 + x 4 = 70, x 1 + x 3 = 40, x 2 + x 4 = 80. (1)

Общая стоимость всех перевозок определяется формулой

f = 1,2x 1 + 1,6x 2 + 0,8x 3 + x 4 .

С математической точки зрения, задача заключается в том, чтобы найти четыре числа x 1 , x 2 , x 3 и x 4 , удовлетворяющие всем заданным условиям и дающим минимум функции f. Решим систему уравнений (1) относительно xi (i = 1, 2, 3, 4) методом исключения неизвестных. Получим, что

x 1 = x 4 – 30, x 2 = 80 – x 4 , x 3 = 70 – x 4 , (2)

а x 4 не может быть определено однозначно. Так как x i і 0 (i = 1, 2, 3, 4), то из уравнений (2) следует, что 30Ј x 4 Ј 70. Подставляя выражение для x 1 , x 2 , x 3 в формулу для f, получим

f = 148 – 0,2x 4 .

Легко видеть, что минимум этой функции достигается при максимально возможном значении x 4 , то есть при x 4 = 70. Соответствующие значения других неизвестных определяются по формулам (2): x 1 = 40, x 2 = 10, x 3 = 0.

4) Задача о радиоактивном распаде.

Пусть N(0) - исходное количество атомов радиоактивного вещества, а N(t) - количество нераспавшихся атомов в момент времени t. Экспериментально установлено, что скорость изменения количества этих атомов N"(t) пропорциональна N(t), то есть N"(t)=–l N(t), l >0 - константа радиоактивности данного вещества. В школьном курсе математического анализа показано, что решение этого дифференциального уравнения имеет вид N(t) = N(0)e –l t . Время T, за которое число исходных атомов уменьшилось вдвое, называется периодом полураспада, и является важной характеристикой радиоактивности вещества. Для определения T надо положить в формуле Тогда Например, для радона l = 2,084 · 10 –6 , и следовательно, T = 3,15 сут.

5) Задача о коммивояжере.

Коммивояжеру, живущему в городе A 1 , надо посетить города A 2 , A 3 и A 4 , причем каждый город точно один раз, и затем вернуться обратно в A 1 . Известно, что все города попарно соединены между собой дорогами, причем длины дорог b ij между городами A i и A j (i, j = 1, 2, 3, 4) таковы:

b 12 = 30, b 14 = 20, b 23 = 50, b 24 = 40, b 13 = 70, b 34 = 60.

Надо определить порядок посещения городов, при котором длина соответствующего пути минимальна.

Изобразим каждый город точкой на плоскости и пометим ее соответствующей меткой Ai (i = 1, 2, 3, 4). Соединим эти точки отрезками прямых: они будут изображать дороги между городами. Для каждой «дороги» укажем ее протяженность в километрах (рис. 2). Получился граф - математический объект, состоящий из некоторого множества точек на плоскости (называемых вершинами) и некоторого множества линий, соединяющих эти точки (называемых ребрами). Более того, этот граф меченый, так как его вершинам и ребрам приписаны некоторые метки - числа (ребрам) или символы (вершинам). Циклом на графе называется последовательность вершин V 1 , V 2 , ..., V k , V 1 такая, что вершины V 1 , ..., V k - различны, а любая пара вершин V i , V i+1 (i = 1, ..., k – 1) и пара V 1 , V k соединены ребром. Таким образом, рассматриваемая задача заключается в отыскании такого цикла на графе, проходящего через все четыре вершины, для которого сумма всех весов ребер минимальна. Найдем перебором все различные циклы, проходящие через четыре вершины и начинающиеся в A 1:

1) A 1 , A 4 , A 3 , A 2 , A 1 ;
2) A 1 , A 3 , A 2 , A 4 , A 1 ;
3) A 1 , A 3 , A 4 , A 2 , A 1 .

Найдем теперь длины этих циклов (в км): L 1 = 160, L 2 = 180, L 3 = 200. Итак, маршрут наименьшей длины - это первый.

Заметим, что если в графе n вершин и все вершины попарно соединены между собой ребрами (такой граф называется полным), то число циклов, проходящих через все вершины, равно Следовательно, в нашем случае имеется ровно три цикла.

6) Задача о нахождении связи между структурой и свойствами веществ.

Рассмотрим несколько химических соединений, называемых нормальными алканами. Они состоят из n атомов углерода и n + 2 атомов водорода (n = 1, 2 ...), связанных между собой так, как показано на рисунке 3 для n = 3. Пусть известны экспериментальные значения температур кипения этих соединений:

y э (3) = – 42°, y э (4) = 0°, y э (5) = 28°, y э (6) = 69°.

Требуется найти приближенную зависимость между температурой кипения и числом n для этих соединений. Предположим, что эта зависимость имеет вид

y » a n + b,

где a , b - константы, подлежащие определению. Для нахождения a и b подставим в эту формулу последовательно n = 3, 4, 5, 6 и соответствующие значения температур кипения. Имеем:

– 42 » 3a + b, 0 » 4a + b, 28 » 5a + b, 69 » 6a + b.

Для определения наилучших a и b существует много разных методов. Воспользуемся наиболее простым из них. Выразим b через a из этих уравнений:

b » – 42 – 3a , b » – 4a , b » 28 – 5a , b » 69 – 6a .

Возьмем в качестве искомого b среднее арифметическое этих значений, то есть положим b » 16 – 4,5a . Подставим в исходную систему уравнений это значение b и, вычисляя a , получим для a следующие значения: a » 37, a » 28, a » 28, a » 36. Возьмем в качестве искомого a среднее значение этих чисел, то есть положим a » 34. Итак, искомое уравнение имеет вид

y » 34n – 139.

Проверим точность модели на исходных четырех соединениях, для чего вычислим температуры кипения по полученной формуле:

y р (3) = – 37°, y р (4) = – 3°, y р (5) = 31°, y р (6) = 65°.

Таким образом, ошибка расчетов данного свойства для этих соединений не превышает 5°. Используем полученное уравнение для расчета температуры кипения соединения с n = 7, не входящего в исходное множество, для чего подставим в это уравнение n = 7: y р (7) = 99°. Результат получился довольно точный: известно, что экспериментальное значение температуры кипения y э (7) = 98°.

7) Задача об определении надежности электрической цепи.

Здесь мы рассмотрим пример вероятностной модели. Сначала приведем некоторые сведения из теории вероятностей - математической дисциплины, изучающей закономерности случайных явлений, наблюдаемых при многократном повторении опыта. Назовем случайным событием A возможный исход некоторого опыта. События A 1 , ..., A k образуют полную группу, если в результате опыта обязательно происходит одно из них. События называются несовместными, если они не могут произойти одновременно в одном опыте. Пусть при n-кратном повторении опыта событие A произошло m раз. Частотой события A называется число W = . Очевидно, что значение W нельзя предсказать точно до проведения серии из n опытов. Однако природа случайных событий такова, что на практике иногда наблюдается следующий эффект: при увеличении числа опытов значение практически перестает быть случайным и стабилизируется около некоторого неслучайного числа P(A), называемого вероятностью события A. Для невозможного события (которое никогда не происходит в опыте) P(A)=0, а для достоверного события (которое всегда происходит в опыте) P(A)=1. Если события A 1 , ..., A k образуют полную группу несовместимых событий, то P(A 1)+...+P(A k)=1.

Пусть, например, опыт состоит в подбрасывании игральной кости и наблюдении числа выпавших очков X. Тогда можно ввести следующие случайные события A i ={X = i}, i = 1, ..., 6. Они образуют полную группу несовместных равновероятных событий, поэтому P(A i) = (i = 1, ..., 6).

Суммой событий A и B называется событие A + B, состоящее в том, что в опыте происходит хотя бы одно из них. Произведением событий A и B называется событие AB, состоящее в одновременном появлении этих событий. Для независимых событий A и B верны формулы

P(AB) = P(A) P(B), P(A + B) = P(A) + P(B).

8) Рассмотрим теперь следующую задачу . Предположим, что в электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказов 1-го, 2-го и 3-го элементов соответственно равны P 1 = 0,1, P 2 = 0,15, P 3 = 0,2. Будем считать цепь надежной, если вероятность того, что в цепи не будет тока, не более 0,4. Требуется определить, является ли данная цепь надежной.

Так как элементы включены последовательно, то тока в цепи не будет (событие A), если откажет хотя бы один из элементов. Пусть A i - событие, заключающееся в том, что i-й элемент работает (i = 1, 2, 3). Тогда P(A1) = 0,9, P(A2) = 0,85, P(A3) = 0,8. Очевидно, что A 1 A 2 A 3 - событие, заключающееся в том, что одновременно работают все три элемента, и

P(A 1 A 2 A 3) = P(A 1) P(A 2) P(A 3) = 0,612.

Тогда P(A) + P(A 1 A 2 A 3) = 1, поэтому P(A) = 0,388 < 0,4. Следовательно, цепь является надежной.

В заключение отметим, что приведенные примеры математических моделей (среди которых есть функциональные и структурные, детерминистические и вероятностные) носят иллюстративный характер и, очевидно, не исчерпывают всего разнообразия математических моделей, возникающих в естественных и гуманитарных науках.

Понятие модели и моделирования.

Модель в широком смысле - это любой образ, аналог мысленный или установленный изображение, описание, схема, чертеж, карта и т. п. какого либо объема, процесса или явления, используемый в качестве его заменителя или представителя. Сам объект, процесс или явление называется оригиналом данной модели.

Моделирование - это исследование какого либо объекта или системы объектов путем построения и изучения их моделей. Это использование моделей для определения или уточнения характеристик и рационализации способов построения вновь конструируемых объектов.

На идее моделирования базируется любой метод научного исследования, при этом, в теоретических методах используются различного рода знаковые, абстрактные модели, в экспериментальных - предметные модели.

При исследовании сложное реальное явление заменяется некоторой упрощенной копией или схемой, иногда такая копия служит лишь только для того чтобы запомнить и при следующей встрече узнать нужное явление. Иногда построенная схема отражает какие - то существенные черты, позволяет разобраться в механизме явления, дает возможность предсказать его изменение. Одному и тому же явлению могут соответствовать разные модели.

Задача исследователя - предсказывать характер явления и ход процесса.

Иногда, бывает, что объект доступен, но эксперименты с ним дорогостоящи или привести к серьезным экологическим последствиям. Знания о таких процессах получают с помощью моделей.

Важный момент - сам характер науки предполагает изучение не одного конкретного явления, а широкого класса родственных явлений. Предполагает необходимость формулировки каких - то общих категорических утверждений, которые называются законами. Естественно, что при такой формулировке многими подробностями пренебрегают. Чтобы более четко выявить закономерность сознательно идут на огрубление, идеализацию, схематичность, то есть изучают не само явление, а более или менее точную ее копию или модель. Все законы- это законы о моделях, а поэтому нет ничего удивительного в том, что с течением времени некоторые научные теории признаются непригодными. Это не приводит к краху науки, поскольку одна модель заменилась другой более современной .

Особую роль в науке играют математические модели, строительный материал и инструменты этих моделей - математические понятия. Они накапливались и совершенствовались в течении тысячелетий. Современная математика дает исключительно мощные и универсальные средства исследования. Практически каждое понятие в математике, каждый математический объект, начиная от понятия числа, является математической моделью. При построении математической модели, изучаемого объекта или явления выделяют те его особенности, черты и детали, которые с одной стороны содержат более или менее полную информацию об объекте, а с другой допускают математическую формализацию. Математическая формализация означает, что особенностям и деталям объекта можно поставить в соответствие подходящие адекватные математические понятия: числа, функции, матрицы и так далее. Тогда связи и отношения, обнаруженные и предполагаемые в изучаемом объекте между отдельными его деталями и составными частями можно записать с помощью математических отношений: равенств, неравенств, уравнений. В результате получается математическое описание изучаемого процесса или явление, то есть его математическая модель.

Изучение математической модели всегда связанно с некоторыми правилами действия над изучаемыми объектами. Эти правила отражают связи между причинами и следствиями.

Построение математической модели - это центральный этап исследования или проектирования любой системы. От качества модели зависит весь последующий анализ объекта. Построение модели - это процедура не формальная. Сильно зависит от исследователя, его опыта и вкуса, всегда опирается на определенный опытный материал. Модель должна быть достаточно точной, адекватной и должна быть удобна для использования.

Математическое моделирование.

Классификация математических моделей.

Математические модели могут быть детерменированными и стохастическими .

Детерменированные модели- это модели, в которых установлено взаимно-однозначное соответствие между переменными описывающими объект или явления.

Такой подход основан на знании механизма функционирования объектов. Часто моделируемый объект сложен и расшифровка его механизма может оказаться очень трудоемкой и длинной во времени. В этом случае поступают следующим образом: на оригинале проводят эксперименты, обрабатывают полученные результаты и, не вникая в механизм и теорию моделируемого объекта с помощью методов математической статистики и теории вероятности, устанавливают связи между переменными, описывающими объект. В этом случае получают стахостическую модель. В стахостической модели связь между переменными носит случайный характер, иногда это бывает принципиально. Воздействие огромного количества факторов, их сочетание приводит к случайному набору переменных описывающих объект или явление. По характеру режимов модель бывают статистическими и динамическими .

Статистическая модель включает описание связей между основными переменными моделируемого объекта в установившемся режиме без учета изменения параметров во времени.

В динамической модели описываются связи между основными переменными моделируемого объекта при переходе от одного режима к другому.

Модели бывают дискретными и непрерывными , а также смешанного типа. В непрерывных переменные принимают значения из некоторого промежутка, в дискретных переменные принимают изолированные значения.

Линейные модели - все функции и отношения, описывающие модель линейно зависят от переменных и не линейные в противном случае.

Математическое моделирование.

Требования,п редъявляемые к моделям.

1. Универсальность - характеризует полноту отображения моделью изучаемых свойств реального объекта.

    1. Адекватность - способность отражать нужные свойства объекта с погрешностью не выше заданной.
    2. Точность - оценивается степенью совпадения значений характеристик реального объекта и значения этих характеристик полученных с помощью моделей.
    3. Экономичность - определяется затратами ресурсов ЭВМ памяти и времени на ее реализацию и эксплуатацию.

Математическое моделирование.

Основные этапы моделирования.

1. Постановка задачи.

Определение цели анализа и пути ее достижения и выработки общего подхода к исследуемой проблеме. На этом этапе требуется глубокое понимание существа поставленной задачи. Иногда, правильно поставить задачу не менее сложно чем ее решить. Постановка - процесс не формальный, общих правил нет.

2. Изучение теоретических основ и сбор информации об объекте оригинала.

На этом этапе подбирается или разрабатывается подходящая теория. Если ее нет, устанавливаются причинно - следственные связи между переменными описывающими объект. Определяются входные и выходные данные, принимаются упрощающие предположения.

3. Формализация.

Заключается в выборе системы условных обозначений и с их помощью записывать отношения между составляющими объекта в виде математических выражений. Устанавливается класс задач, к которым может быть отнесена полученная математическая модель объекта. Значения некоторых параметров на этом этапе еще могут быть не конкретизированы.

4. Выбор метода решения.

На этом этапе устанавливаются окончательные параметры моделей с учетом условия функционирования объекта. Для полученной математической задачи выбирается какой - либо метод решения или разрабатывается специальный метод. При выборе метода учитываются знания пользователя, его предпочтения, а также предпочтения разработчика.

5. Реализация модели.

Разработав алгоритм, пишется программа, которая отлаживается, тестируется и получается решение нужной задачи.

6. Анализ полученной информации.

Сопоставляется полученное и предполагаемое решение, проводится контроль погрешности моделирования.

7. Проверка адекватности реальному объекту.

Результаты, полученные по модели сопоставляются либо с имеющейся об объекте информацией или проводится эксперимент и его результаты сопоставляются с расчётными.

Процесс моделирования является итеративным. В случае неудовлетворительных результатов этапов 6. или 7. осуществляется возврат к одному из ранних этапов, который мог привести к разработке неудачной модели. Этот этап и все последующие уточняются и такое уточнение модели происходит до тех пор, пока не будут получены приемлемые результаты.

Математическая модель - это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования - исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование - это еще и метод познания окружающего мира, дающий возможность управлять им.

Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

1.1.2 2. Основные этапы математического моделирования

1) Построение модели . На этом этапе задается некоторый «нематематический» объект - явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель . На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

1.1.3 3. Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие - как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф - это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ВСЕОБЩАЯ КОМПЬЮТЕРИЗАЦИЯ ИЛИ ИМИТАЦИОННЫЕ МОДЕЛИ

Сейчас, когда в стране происходит чуть ли не всеобщая компьютеризация, от специалистов различных профессий приходится слышать высказывания: "Вот внедрим у себя ЭВМ, тогда все задачи сразу же будут решены". Эта точка зрения совершенно не верна, сами по себе ЭВМ без математических моделей тех или иных процессов ничего сделать не смогут и о всеобщей компьютеризации можно лишь мечтать.

В подтверждение вышесказанного попытаемся обосновать необходимость моделирования, в том числе математического, раскроем его преимущества в познании и преобразовании человеком внешнего мира, выявим существующие недостатки и пойдем… к имитационному моделированию, т.е. моделированию с использованием ЭВМ. Но все по порядку.

Прежде всего, ответим на вопрос: что такое модель?

Модель – это материальный или мысленно представленный объект, который в процессе познания (изучения) замещает оригинал, сохраняя некоторые важные для данного исследования типичные свойства.

Хорошо построенная модель доступнее для исследования – нежели реальный объект. Например, недопустимы эксперименты с экономикой страны в познавательных целях, здесь без модели не обойтись.

Резюмируя сказанное можно ответить на вопрос: для чего нужны модели? Для того, чтобы

  • понять, как устроен объект (его структура, свойства, законы развития, взаимодействия с окружающим миром).
  • научиться управлять объектом (процессом) и определять наилучшие стратегии
  • прогнозировать последствия воздействия на объект.

Что положительного в любой модели? Она позволяет получить новые знания об объекте, но, к сожалению, в той или иной степени не полна.

Модель сформулированная на языке математики с использованием математических методов называется математической моделью.

Исходным пунктом ее построения обычно является некоторая задача, например экономическая. Широко распространены, как дескриптивные, так и оптимизационные математические, характеризующие различные экономические процессы и явления, например:

  • распределение ресурсов
  • рациональный раскрой
  • транспортные перевозки
  • укрупнение предприятий
  • сетевое планирование.

Каким образом происходит построение математической модели?

  • Во–первых , формулируется цель и предмет исследования.
  • Во–вторых , выделяются наиболее важные характеристики, соответствующие данной цели.
  • В–третьих, словесно описываются взаимосвязи между элементами модели.
  • Далее взаимосвязь формализуется.
  • И производится расчет по математической модели и анализ полученного решения.

Используя данный алгоритм можно решить любую оптимизационную задачу, в том числе и многокритериальную, т.е. ту в которой преследуется не одна, а несколько целей, в том числе противоречивых.

Приведем пример. Теория массового обслуживания – проблема образования очередей. Нужно уравновесить два фактора – затраты на содержание обслуживающих устройств и затраты на пребывание в очереди. Построив формальное описание модели производят расчеты, используя аналитические и вычислительные методы. Если модель хороша, то ответы найденные с ее помощью адекватны моделирующей системе, если плоха, то подлежит улучшению и замене. Критерием адекватности служит практика.

Оптимизационные модели, в том числе многокритериальные, имеют общее свойство– из вестна цель(или несколько целей) для достижения которой часто приходится иметь дело со сложными системами, где речь идет не столько о решении оптимизационных задач, сколько об исследовании и прогнозировании состояний в зависимости от избираемых стратегий управления. И здесь мы сталкиваемся с трудностями реализации прежнего плана. Они состоят в следующем:

  • сложная система содержит много связей между элементами
  • реальная система подвергается влиянию случайных факторов, учет их аналитическим путем невозможен
  • возможность сопоставления оригинала с моделью существует лишь в начале и после применения математического аппарата, т.к. промежуточные результаты могут не иметь аналогов в реальной системе.

В связи с перечисленными трудностями, возникающими при изучении сложных систем, практика потребовала более гибкий метод, и он появился – имитационное моделирование "Simujation modeling ".

Обычно под имитационной моделью понимается комплекс программ для ЭВМ, описывающий функционирование отдельных блоков систем и правил взаимодействия между ними. Использование случайных величин делает необходимым многократное проведение экспериментов с имитационной системой (на ЭВМ) и последующий статистический анализ полученных результатов. Весьма распространенным примером использования имитационных моделей является решение задачи массового обслуживания методом МОНТЕ–КАРЛО.

Таким образом, работа с имитационной системой представляет собой эксперимент, осуществляемый на ЭВМ. В чем же заключаются преимущества?

–Большая близость к реальной системе, чем у математических моделей;

–Блочный принцип дает возможность верифицировать каждый блок до его включения в общую систему;

–Использование зависимостей более сложного характера, не описываемых простыми математическими соотношениями.

Перечисленные достоинства определяют недостатки

–построить имитационную модель дольше, труднее и дороже;

–для работы с имитационной системой необходимо наличие подходящей по классу ЭВМ;

–взаимодействие пользователя и имитационной модели (интерфейс) должно быть не слишком сложным, удобным и хорошо известным;

–построение имитационной модели требует более глубокого изучения реального процесса, нежели математическое моделирование.

Встает вопрос: может ли имитационное моделирование заменить методы оптимизации? Нет, но удобно дополняет их. Имитационная модель – это программа, реализующая некоторый алгоритм, для оптимизации управления которым прежде решается оптимизационная задача.

Итак, ни ЭВМ, ни математическая модель, ни алгоритм для ее исследования порознь не могут решить достаточно сложную задачу. Но вместе они представляют ту силу, которая позволяет познавать окружающий мир, управлять им в интересах человека.

1.2 Классификация моделей

1.2.1
Классификация с учетом фактора времени и области использования (Макарова Н.А.)

Статическая модель - это как бы одномоментный срез информации по объекту (результат одного обследования)
Динамическая модель-позволяет увидеть изменения объекта во времени(Карточка в поликлинике)
Можно классифицировать модели и по тому, к какой области знаний они принадлежат (биологические,исторические , экологические и т.п.)
Возврат в начало

1.2.2 Классификация по области использования (Макарова Н.А.)

Учебные- наглядные пособия, тренажеры,о бучающие программы
Опытные модели-уменьшенные копии (автомобиль в аэродинамической трубе)
Научно-технические- синхрофазотрон , стенд для проверки электронной аппаратуры
Игровые- экономические , спортивные, деловые игры
Имитационные- не просто отражают реальность, но имитируют ее(на мышах испытываеется лекарство, в школах проводятся эксперементы и т.п. .Такой метод моделирования называется методом проб и ошибок
Возврат в начало

1.2.3 Классификация по способу представления Макарова Н.А.)

Материальные модели-иначе можно назвать предметными. Они воспринимают геометрические и физические свойства оригинала и всегда имеют реальное воплощение
Информационные модели-нельзя потрогать или увидеть. Они строятся только на информации.И нформационная модель совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром.
Вербальная модель - информационная модель в мысленной или разговорной форме.
Знаковая модель-информационная модель выраженная знаками,т .е . средствами любого формального языка.
Компьютерная модель -м одель, реализованная средствами программной среды.

1.2.4 Классификация моделей, приведенная в книге "Земля Информатика" (Гейн А.Г.))

"...вот нехитрая на первый взгляд задача: сколько потребуется времени, чтобы пересечь пустыню Каракумы? Ответ,разумеется зависит от способа передвижения. Если путешествоватьна верблюдах , то потребуется один срок, другой-если ехать на автомобиле, третий - если лететь самолетом. А самое главное - для планирования путешествия требуются разные модели. Для первого случая требуемую модель можно найти в мемуарах знаменитых исследователей пустынь: ведь здесь не обойтись без информации об оазисах и верблюжьих тропах. Во втором случае незаменимая информация, содержащаяся в атласе автомобильных дорог. В третьем - можно воспользоваться расписанием самолетных рейсов.
Отличаются эти три модели - мемуары, атлас и расписание и характером предьявления информации. В первом случае модель представлена словесным описанием информации (описательная модель) , во втором- как бы фотографией с натуры (натурная модель) , в третьем - таблицей содержащей условные обозначения: время вылета и прилета, день недели, цена билета (так называемая знаковая модель) Впрочем это деление весьма условно- в мемуарах могут встретиться карты и схемы (элементы натурной модели), на картах имеются условные обозначения (элементы знаковой модели), в расписании приводится расшифровка условных обозначений (элементы описательной модели). Так что эта классификация моделей... на наш взгля малопродуктивна"
На мой взгляд этот фрагмент демонстрирует общий для всех книг Гейна описательный (замечательный язык и стиль изложения) и как бы, сократовский стиль обучения (Все считают что это вот так. Я совершенно согласен с вами, но если приглядеться, то...). В таких книгах достаточно сложно найти четкую систему определений (она и не предполагается автором). В учебнике под редакцией Н.А. Макаровой демонстрируется другой подход - определения понятий четко выделены и несколько статичны.

1.2.5 Классификация моделей приведенная в пособии А.И.Бочкина

Способов классификации необычно много.П риведем лишь некоторые, наиболее известные основания и признаки:дискретность и непрерывность,матричные и скалярные модели, статические и динамические модели, аналитические и информационные модели, предметные и образно-знаковые модели, масштабные и немасштабные...
Каждый признак даетопределенное знание о свойствах и модели, и моделируемой реальности. Признак может служить подсказкой о способе выполненного или предстоящего моделирования.
Дискретность и непрерывностьДискретность - характерный признак именно компьютерных моделей.В едь компьютер может находиться в конечном, хотя и очень большом количестве состояний. Поэтому даже если объект непрерывен (время), в модели он будет изменяться скачками. Можно считать непрерывность признаком моделей некомпьютерного типа.
Случайность и детерминированность . Неопределенность, случайность изначально противостоит компьютерному миру: Запущенный вновь алгоритм должен повториться и дать те же результаты. Но для имитации случайных процессов используют датчики псевдослучайных чисел. Введение случайности в детерминированные задачи приводит к мощным и интересным моделям (Вычисление площади методом случайных бросаний).
Матричность - скалярность . Наличие параметров у матричной модели говорит о ее большей сложности и, возможно, точности по сравнению со скалярной . Например, если не выделить в населении страны все возрастные группы, рассматривая его изменение как целое, получим скалярную модель (например модель Мальтуса), если выделить, - матричную (половозрастную). Именно матричная модель позволила объяснить колебания рождаемости после войны.
Статичность динамичность . Эти свойства модели обычно предопределяются свойствами реального объекта. Здесь нет свободы выбора. Просто статическая модель может быть шагом к динамической , либо часть переменных модели может считаться пока неизменной. Например, спутник движется вокруг Земли, на его движение влияет Луна. Если считать Луну неподвижной за время оборота спутника, получим более простую модель.
Аналитические модели . Описание процессов аналитически , формулами и уравнениями. Но при попытке построить график удобнее иметь таблицы значений функции и аргументов.
Имитационные модели . Имитационные модели появились давно в виде масштабных копий кораблей, мостов и пр. появились давно, но в связи с компьютерами рассматриваются недавно. Зная как связаны элементы модели аналитически и логически, проще не решать систему неких соотношений и уравнений, а отобразить реальную систему в память компьютера, с учетом связей между элементами памяти.
Информационные модели . Информационные модели принято противополагать математическим , точнее алгоритмическим. Здесь важно соотношение объемов данные/алгоритмы. Если данных больше или они важнее имеем информационную модель, иначе - математичеескую .
Предметные модели . Это прежде всего детская модель - игрушка.
Образно-знаковые модели . Это прежде всего модель в уме человека: образная , если преобладают графические образы, и знаковая , если больше слов или (и) чисел. Образно-знаковые модели строятся на компьютере.
Масштабные модели . К масштабным моделям те из предметных или образных моделей, которые повторяют форму объекта (карта).