Механизм сейсмических воздействий на здания и сооружения. Внешние и внутренние нагрузки и воздействия на отдельные конструктивные элементы и здание в целом Нагрузки и воздействия на инженерные сооружения
→ Конструкции зданий
Нагрузки и воздействия на здания
Здания в целом и их отдельные части испытывают различные влияния от нагрузок (механических усилий) и воздействий, например, от изменения температуры наружного и внутреннего воздуха.
Под влиянием этих нагрузок и воздействий в материалах конструкций зданий возникают внутренние силы, величина которых, приходящаяся на единицу площади (интенсивность внутренних сил), называется напряжением. Напряжение чаще всего измеряется в кг/см2.
В результате напряжений в материалах и конструкциях могут возникать деформации, т. е. растяжение, сжатие, сдвиг, изгиб, кручение или более сложные деформации.
Деформации могут быть упругими, т. е. исчезающими после устранения воздействия, вызвавшего деформацию, и пластическими, т. е. остающимися после устранения воздействия.
Нагрузка может быть сосредоточенной, когда площадь давления ее мала сравнительно с размером тела, к которому она приложена, и может быть принята за точку, например, нагрузка от человека на пол.
Если площадь давления относительно велика, то нагрузка называется распределенной. Если нагрузка равномерно распределяется по площади, то она называется равномерно распределенной, например, вес слоя воды на водонаполненных плоских покрытиях. Характер приложения нагрузок может быть и другим, например, на стену подвала здания снаружи давление грунта по мере углубления увеличивается и выражается в виде треугольника с основанием на уровне пола подвала.
Временное сопротивление, или предел прочности материала, представляет собой напряжение в материале при различных видах деформации (растяжение, сжатие, кручение, изгиб), соответствующее максимальному (до разрушения образца) значению нагрузки, и измеряется отношением максимальной нагрузки к площади первоначального сечения образца (т. е. сечения недеформированного образца) обычно в кг/см2.
Основными характеристиками сопротивления материалов силовым воздействиям являются нормативные сопротивления (R”), устанавливаемые на основании испытаний.
Рис. 1. Схема распределения нагрузок в здании
а - план; б - разрез
Нормативные сопротивления могут быть главным образом пределами прочности при различных деформациях или пределами текучести материалов, представляющими собой напряжения при различных видах деформации, которые характеризуются тем, что остаточная (пластическая) деформация распределяется по всему рабочему объему образца при постоянстве действующей нагрузки. Нормативные сопротивления различных материалов и конструкций приведены в СНиП II-A. 10-62.
Возможное изменение сопротивлений материалов, изделий и конструкций в неблагоприятную сторону по сравнению с нормативными, вызываемое изменчивостью механических свойств (неоднородностью материалов), учитывается коэффициентами однородности (k), которые приведены в СНиП II-A 10-62.
Особенности работы материалов, конструктивных элементов и их соединений, оснований, а также конструкций и зданий в целом, не отражаемые в расчетах прямым путем, учитываются коэффициентами условий работы (т), приведенными в СНиП II-A. 10-62.
Сопротивления материалов, учитываемые расчетом, называются расчетными сопротивлениями ® и определяются как произведение нормативных сопротивлений (R1’) на коэффициенты однородности (/г), а в необходимых случаях и на коэффициенты условий работы (т).
Значения расчетных сопротивлений для определения условий расчета с учетом соответствующих коэффициентов условий работы устанавливаются нормами проектирования строительных конструкций и оснований зданий и сооружений различного назначения.
Наибольшие нагрузки и воздействия, не стесняющие и не нарушающие нормальных эксплуатационных условий и в возможных случаях контролируемые при эксплуатации и на производстве, называются нормативными.
Возможное отклонение нагрузок в неблагоприятную (большую или меньшую) сторону от их нормативных значений вследствие изменчивости нагрузок или отступлений от условий нормальной эксплуатации учитывается коэффициентами перегрузки (п), устанавливаемыми с учетом назначения зданий и сооружений и условий их эксплуатации.
Различные нормативные нагрузки на перекрытия, нагрузки от технологического оборудования, мостовых кранов, снеговые и ветровые нагрузки, а также коэффициенты перегрузки приведены в главе СНиП II-A. 11-62.
Учитываемые расчетом нагрузки, определяемые как произведение нормативных нагрузок на соответствующие коэффициенты перегрузки, называются расчетными нагрузками.
Все нагрузки и воздействия, вызывающие усилия (напряжения) в конструкциях и основаниях сооружений, учитываемые при проектировании, подразделяются на постоянные и временные. К постоянным относятся такие нагрузки и воздействия, которые могут иметь место при строительстве или эксплуатации сооружений постоянно, например: вес постоянных частей зданий, вес и давление грунтов, усилия предварительного напряжения, вес проводов на опорах линий электропередачи и антенных устройств сооружений связи и др.
Временными называются такие нагрузки или воздействия, которые в отдельные периоды строительства и эксплуатации сооружения могут отсутствовать.
В зависимости от длительности действия временные нагрузки и воздействия разделяются на:
а) временные длительно действующие, которые могут наблюдаться в период строительства и эксплуатации сооружения продолжительное время, например: нагрузки в помещениях книгохранилищ и библиотек, нагрузки на перекрытия складских помещений, вес стационарного оборудования, давление жидкостей и газов в резервуарах и трубопроводах и др.;
б) кратковременно действующие, которые могут наблюдаться в период строительства и эксплуатации сооружения лишь непродолжительное время, например: нагрузки от подвижного подъемно-транспортного оборудования, снеговые и ветровые нагрузки, давления волны и льда, температурные климатические воздействия и др.; »
в) особые, возникновение которых возможно в исключительных случаях, например: сейсмические воздействия в районах, подвергающихся землетрясениям, давления воды при катастрофических паводках, нагрузки, возникающие при разрушении части здания, и др.
При расчете строительных конструкций учитываются не все нагрузки и воздействия, оказывающие на них влияние, а только определенные сочетания нагрузок и воздействий (основные, дополнительные, особые сочетания), которые приведены в СНиП II-A. 10-62 и II-A. 11-62.
По характеру действия нагрузки делятся на статические (меняющиеся постепенно) и динамические (ударные, быстро и периодически изменяющиеся).
Динамические нагрузки и воздействия на строительные конструкции учитываются в соответствии с указаниями нормативных документов по проектированию и расчету несущих конструкций, подвергающихся динамическим нагрузкам и воздействиям. При отсутствии необходимых для этого данных динамическое влияние на конструкции допускается учитывать путем умножения расчетных нагрузок на коэффициенты динамичности.
В процессе строительства и эксплуатации здание испытывает на себе действие различных нагрузок. Внешние воздействия можно разделить на два вида: силовые и несиловые или воздействия среды.
К силовым воздействиям относятся различные виды нагрузок:
постоянные – от собственного веса (массы) элементов здания, давления грунта на его подземные элементы;
временные (длительные) – от веса стационарного оборудования, длительно хранящихся грузов, собственного веса постоянных элементов здания (например, перегородок);
кратковременные – от веса (массы) подвижного оборудования (например, кранов в промышленных зданиях), людей, мебели, снега, от действия ветра;
особые – от сейсмических воздействий, воздействий в результате аварий оборудования и т.п.
К несиловым относятся:
температурные воздействия , вызывающие изменения линейных размеров материалов и конструкций, которое приводит в свою очередь к возникновению силовых воздействий, а также влияющие на тепловой режим помещения;
воздействия атмосферной и грунтовой влаги , а также парообразной влаги, содержащейся в атмосфере и в воздухе помещений, вызывающие изменение свойств материалов из которых выполнены конструкции здания;
движения воздуха вызывающее не только нагрузки (при ветре), но и его проникновение внутрь конструкции и помещений, изменение их влажностного и теплового режима;
воздействие лучистой энергии солнца (солнечная радиация) вызывающие в результате местного нагрева изменение физико-технических свойств поверхностных слоев материала, конструкций, изменение светового и теплового режима помещений;
воздействие агрессивных химических примесей , содержащихся в воздухе, которые в присутствии влаги могут привести к разрушению материала конструкций здания (явлении коррозии);
биологические воздействия , вызываемые микроорганизмами или насекомыми, приводящие к разрушению конструкций из органических строительных материалов;
воздействие звуковой энергии (шума) и вибрации от источников внутри или вне здания.
По месту приложения усилий нагрузки разделяются на сосредоточенные (например, вес оборудования) и равно мерно распределенные (собственный вес, снег).
По характеру действия нагрузки могут быть статическими , т.е. постоянными по величине во времени и динамическими (ударными).
По направлению – горизонтальные (ветровой напор) и вертикальные (собственный вес).
Т.о. на здание действует самые различные нагрузки по величине, направлению, характеру действия и месту приложения.
Рис. 2.3. Нагрузки и воздействия на здание.
Может получится такое сочетание нагрузок, при котором все они будут действовать в одном направлении, усиливая друг друга. Именно на такие неблагоприятные сочетания нагрузок рассчитывают конструкции здания. Нормативные значения всех усилий, действующих на здание, приведены в ДБН или СНиПе.
Следует помнить, что воздействия на конструкции начинаются с момента их изготовления, продолжаются при транспортировке, в процессе возведения здания и его эксплуатации.
Для того чтобы здание было технически целесообразным, необходимо знать внешние воздействия, воспринимаемые зданием в целом и его отдельными элементами (рис. 11.2), которые можно разделить на два вида: силовые (нагрузки) и несиловые (воздействия окружающей среды).
Рис. 11.2.
1 – постоянные и временные вертикальные силовые воздействия; 2 – ветер; 3 – особые силовые воздействия (сейсмические или др.); 4 – вибрации; 5 – боковое давление грунта; 6 – давление грунта (отпор); 7 – грунтовая влага; 8 – шум; 9 – солнечная радиация; 10 – атмосферные осадки; 11 – состояние атмосферы (переменная температура и влажность, наличие химических примесей)
К силовым воздействиям относятся различные виды нагрузок:
- постоянные – от собственной массы элементов здания, от давления грунта на его подземные элементы;
- временные длительного действия – от массы стационарного оборудования, длительно хранящихся грузов, собственной массы перегородок, которые могут перемещаться при реконструкции;
- кратковременные – от массы подвижного оборудования, людей, мебели, снега, от действия ветра на здание;
- особые – от сейсмических воздействий, воздействий в результате аварии оборудования.
К несиловым воздействиям относятся:
- температурные воздействия, влияющие на тепловой режим помещений, а также приводящие к температурным деформациям, которые уже являются силовыми воздействиями;
- воздействия атмосферной и грунтовой влаги, а также воздействия паров влаги в воздухе помещения, вызывающие изменения свойств материалов, из которых выполнены конструкции здания;
- движение воздуха, вызывающее его проникновение внутрь конструкции и помещения, изменяющее их влажностный и тепловой режим;
- воздействие прямой солнечной радиации, вызывающее изменение физико-технических свойств поверхностных слоев материала конструкций, а также теплового и светового режима помещений;
- воздействие агрессивных химических примесей, содержащихся в воздухе, которые в смеси с дождевой или грунтовой водой образуют кислоты, разрушающие материалы (коррозия);
- биологические воздействия, вызываемые микроорганизмами или насекомыми, приводящие к разрушению конструкций и к ухудшению внутренней среды помещений;
- воздействие звуковой энергии (шума) от источников внутри и вне здания, нарушающей нормальный акустический режим в помещении.
В соответствии с перечисленными нагрузками и воздействиями к зданиям и их конструкциям предъявляются следующие требования.
- 1. Прочность – способность воспринимать нагрузки без разрушения.
- 2. Устойчивость – способность конструкции сохранять равновесие при внешних и внутренних нагрузках.
- 3. Жесткость – способность конструкций нести нагрузку с минимальными, заранее заданными нормами деформациями.
- 4. Долговечность
– способность здания и его конструкций выполнять свои функции и сохранять свои качества в течение предельного срока эксплуатации, на который они рассчитаны. Долговечность зависит от следующих факторов:
- ползучести материалов, т.е. процесса малых непрерывных деформаций, протекающих в материалах в условиях длительного воздействия нагрузок;
- морозостойкости материалов, т.е. способности влажного материала противостоять попеременному замораживанию и оттаиванию;
- влагостойкости материалов, т.е. их способности противостоять разрушающему действию влаги (размягчению, набуханию, короблению, расслоению, растрескиванию);
- коррозионной стойкости, т.е. способности материалов сопротивляться разрушению, вызванному химическими и электрохимическими процессами;
- биостойкости, т.е. способности органических материалов противостоять разрушающему действию насекомых и микроорганизмов.
Долговечность определяется предельным сроком службы зданий. По этому признаку здания и сооружения разделяют на четыре степени:
- 1–я – более 100 лет (основные конструкции, фундаменты, наружные стены и т.п. выполнены из материалов, обладающих высокой стойкостью против перечисленных видов воздействий);
- 2–я – от 50 до 100 лет;
- 3–я – от 20 до 50 лет (конструкции не обладают достаточной стойкостью, например дома с деревянными наружными стенами);
- 4–я – до 20 лет (временные здания и сооружения).
Срок службы зависит также от условий, в которых находятся здание и сто конструкции, а также от качества их эксплуатации.
Важнейшим требованием к зданиям и сооружениям является требование пожарной безопасности . По степени возгораемости строительные материалы делятся на три группы:
- несгораемые (не горят, не тлеют и не обугливаются под воздействием огня или высокой температуры);
- трудносгораемые (под воздействием огня или высокой температуры с трудом воспламеняются, тлеют или обугливаются, но после удаления источника огня или высокой температуры горение и тление прекращаются). Обычно они защищаются снаружи несгораемыми материалами;
- сгораемые (под воздействием открытого огня или высокой температуры горят, тлеют или обугливаются и после удаления источника огня или температуры продолжают гореть или тлеть).
Предел огнестойкости конструкций зданий определяется длительностью (в минутах) сопротивления действию огня до потери прочности или устойчивости, либо до образования сквозных трещин, либо до повышения температуры на поверхности конструкции со стороны, противоположной огню, в среднем более 140°С.
Здания или их отсеки между противопожарными стенками – брандмауэрами (рис. 11.3) в зависимости от степени возгораемости их конструкций разделяются на пять степеней огнестойкости. Степень огнестойкости зданий определяется по Строительным нормам и правилам (СНиП) 21-01-97* "Пожарная безопасность зданий и сооружений".
Рис. 11.3. Противопожарные стенки – брандмауэры (а) и зоны (б):
1 – противопожарная стенка; 2 – несгораемое перекрытие; 3 – несгораемый гребень
К I степени огнестойкости относятся здания, несущие и ограждающие конструкции которых выполнены из камня, бетона, кирпича с применением плитных или листовых несгораемых материалов. В зданиях II степени огнестойкости материалы также выполнены из несгораемых материалов, но имеют меньший предел огнестойкости. В зданиях III степени огнестойкости допускается применение сгораемых материалов для перегородок и перекрытий. В зданиях IV степени огнестойкости для всех конструкций допускается применение сгораемых материалов с минимальным пределом огнестойкости 15 мин, кроме стен лестничных клеток. К V степени огнестойкости относят временные здания. Предел огнестойкости их конструкций не нормируется. В зданиях III, IV и V степеней огнестойкости предусматривается рассечение их брандмауэрами и противопожарными перекрытиями на отсеки, ограничивающие площадь распространения пожара.
Предполагается, что все опорные точки конструкции движутся поступательно по одинаковому закону Х 0 = XJ ()
При землетрясении грунты основания здания приходят в движение, что показано на рисунке 14.
При этом на каждую единицу объема сооружения действует инерционная сила, зависящая от сосредоточенных в этих объемах инерционных параметров - масс и жест- костных характеристик сооружения. Эти инерционные силы называются сейсмическими силами или сейсмическими нагрузками и приводят сооружение в напряженно- деформированное состояние.
Рассмотрим основные подходы, позволяющие определить такие важные параметры, как жесткость, собственную частоту и формы колебаний сооружения. Наиболее просто выбрать в качестве модели здания линейный осциллятор, воздействие на который моделируется горизонтальным перемещением основания по заданному закону X Q = X 0 (t), а система имеет одну степень свободы, определяемую горизонтальным перемещением сосредоточенной массы т (рис. 15).
Таким образом, полное перемещение Х 0 (0 массы т в любой момент времени складывается из «переносного» перемещения Xj(t) и относительного перемещения, вызванного изгибом стержня X 2 (t):
Составим уравнение движения, используя метод перемещений, ибо нас интересует значение восстанавливающей силы (силы упругости), равной
Расчетная схема линейного осциллятора
где -перемещение Х т массы в горизонтальном
направлении, вызванное действием единичной силы - жесткость линейного осциллятора.
Уравнение равновесия массы будет
Тогда с учетом:
где со 2 - частота собственных колебаний осциллятора, получаем уравнение движения, в котором параметром, определяющим колебательную систему, является частота собственных колебаний этой системы:
Сейсмические нагрузки могут действовать в любом направлении, поэтому для реальных зданий и сооружений уравнения, определяющие их движение при сейсмической нагрузке, весьма громоздки, однако при этом система характеризуется все той же частотой собственных колебаний.
Если обобщить задачу сейсмостойкого строительства, то с точки зрения выведенных уравнений она состоит в выявлении тех конструкций, которые являются наименее прочными и жесткими, и соответственно в увеличении их прочности (сейсмоусиление) или снижении нагрузки на них (сейсмоизоляция).
В современных нормативных документах изложены общие требования по обеспечению механической безопасности зданий и сооружений. Так, в ч. 6 ст. 15 Федерального закона № 384 «Технический регламент о безопасности зданий и сооружений» выдвинуты требования о том, что «в процессе строительства и эксплуатации здания или сооружения его строительные конструкции и основание не достигнут предельного состояния по прочности и устойчивости... при вариантах одновременного действия нагрузок и воздействий».
За предельное состояние строительных конструкций и основания по прочности и устойчивости должно быть принято состояние, характеризующееся:
- разрушением любого характера;
- потерей устойчивости формы;
- потерей устойчивости положения;
- нарушением эксплуатационной пригодности и иными явлениями, связанными с угрозой причинения вреда жизни и здоровью людей, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни и здоровью животных и растений.
В расчетах строительных конструкций и основания должны быть учтены все виды нагрузок, соответствующих функциональному назначению и конструктивному решению здания или сооружения, климатические, а в необходимых случаях технологические воздействия, а также усилия, вызываемые деформацией строительных конструкций и основания.
Здание или сооружение на территории, на которой возможно проявление опасных природных процессов и явлений и (или) техногенных воздействий, должно быть спроектировано и построено таким образом, чтобы в процессе эксплуатации здания или сооружения опасные природные процессы и явления и (или) техногенные воздействия не вызывали последствий, указанных в ст. 7 Федерального закона № 384 , и (или) иных событий, создающих угрозу причинения вреда жизни или здоровью людей, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни и здоровью животных и растений.
Для элементов строительных конструкций, характеристики которых, учтенные в расчетах прочности и устойчивости здания или сооружения, могут изменяться в процессе эксплуатации под воздействием климатических факторов или агрессивных факторов наружной и внутренней среды, в том числе под воздействием сейсмических процессов, которые могут вызывать усталостные явления в материале строительных конструкций, в проектной документации должны быть дополнительно указаны параметры, характеризующие сопротивление таким воздействиям, или мероприятия по защите от них.
При оценке последствий землетрясения используется классификация зданий, приведенная в сейсмической шкале MMSK - 86 . В соответствии с этой шкалой здания разделяются на две группы:
- 1) здания и типовые сооружения без антисейсмических мероприятий;
- 2) здания и типовые сооружения с антисейсмическими мероприятиями.
Здания и типовые сооружения без антисейсмических мероприятий разделяют на типы.
А1 - местные здания. Здания со стенами из местных строительных материалов: глинобитные без каркаса; саманные или из сырцового кирпича без фундамента; выполненные из скатанного или рваного камня на глиняном растворе и без регулярной (из кирпича или камня правильной формы) кладки в углах ит.п.
А2 - местные здания. Здания из самана или сырцового кирпича, с каменными, кирпичными или бетонными фундаментами; выполненные из рваного камня на известковом, цементном или сложном растворе с регулярной кладкой в углах; выполненные из пластового камня на известковом, цементном или сложном растворе; выполненные из кладки типа «мидис»; здания с деревянным каркасом с заполнением из самана или глины, с тяжелыми земляными или глиняными крышами; сплошные массивные ограды из самана или сырцового кирпича и т. п.
Б - местные здания. Здания с деревянными каркасами с заполнителями из самана или глины и легкими перекрытиями:
- 1) Б1 - типовые здания. Здания из жженого кирпича, тесаного камня или бетонных блоков на известковом, цементном или сложном растворе; деревянные щитовые дома;
- 2) Б2 - сооружения из жженого кирпича, тесаного камня или бетонных блоков на известковом, цементном или сложном растворе: сплошные ограды и стенки, трансформаторные киоски, силосные и водонапорные башни.
В - местные здания. Деревянные дома, рубленные в «лапу» или в «обло»:
- 1) В1 - типовые здания. Железобетонные, каркасные крупнопанельные и армированные крупноблочные дома;
- 2) В2 - сооружения. Железобетонные сооружения: силосные и водонапорные башни, маяки, подпорные стенки, бассейны и т. п.
Здания и типовые сооружения с антисейсмическими мероприятиями разделяются на типы:
- 1) С 7 - типовые здания и сооружения всех видов (кирпичные, блочные, панельные, бетонные, деревянные, щитовые и др.) с антисейсмическими мероприятиями для расчетной сейсмичности 7 баллов;
- 2) С8 - типовые здания и сооружения всех видов с антисейсмическими мероприятиями для расчетной сейсмичности 8 баллов;
- 3) С9 - типовые здания и сооружения всех видов с антисейсмическими мероприятиями для расчетной сейсмичности 9 баллов.
При сочетании в одном здании двух или трех типов здание в целом следует относить к слабейшему из них.
При землетрясениях принято рассматривать пять степеней разрушения зданий. В международной модифицированной сейсмической шкале MMSK-86 предлагается следующая классификация степеней разрушения зданий:
- 1) d = 1 - слабые повреждения. Слабые повреждения материала и неконструктивных элементов здания: тонкие трещины в штукатурке; откалывание небольших кусков штукатурки; тонкие трещины в сопряжениях перекрытий со стенами и стенового заполнения с элементами каркаса, между панелями, в разделке печей и дверных коробок; тонкие трещины в перегородках, карнизах, фронтонах, трубах. Видимые повреждения конструктивных элементов отсутствуют. Для ликвидации повреждений достаточно текущего ремонта зданий;
- 2) d = 2 - умеренные повреждения. Значительные повреждения материала и неконструктивных элементов здания, падение пластов штукатурки, сквозные трещины в перегородках, глубокие трещины в карнизах и фронтонах, выпадение кирпичей из дымовых труб, падение отдельных черепиц. Слабые повреждения несущих конструкций: тонкие трещины в несущих стенах; незначительные деформации и небольшие отколы бетона или раствора в узлах каркаса и стыках панелей. Для ликвидации повреждений необходим капитальный ремонт зданий;
- 3) d = 3 - тяжелые повреждения. Разрушения неконструктивных элементов здания: обвалы частей перегородок, карнизов, фронтонов, дымовых труб; значительные повреждения несущих конструкций: сквозные трещины в несущих стенах; значительные деформации каркаса; заметные сдвиги панелей; выкрашивание бетона в узлах каркаса. Возможен восстановительный ремонт здания;
- 4) d = 4 - частичные разрушения несущих конструкций: проломы и вывалы в несущих стенах; развалы стыков и узлов каркаса; нарушение связей между частями здания; обрушение отдельных панелей перекрытия; обрушение крупных частей здания. Здание подлежит сносу;
- 5) d = 5 - обвалы. Обрушение несущих стен и перекрытия, полное обрушение здания с потерей его формы.
Анализируя последствия землетрясений, можно выделить следующие основные повреждения, которые получили здания различной конструктивной схемы, если сейсмические воздействия превосходили расчетные.
В каркасных зданиях преимущественно разрушаются узлы каркаса вследствие возникновения в этих местах значительных изгибающих моментов и поперечных сил. Особенно сильные повреждение получают основания стоек и узлы соединения ригелей со стойками каркаса (рис. 16а).
В крупнопанельных и крупноблочных зданиях наиболее часто разрушаются стыковые соединения панелей и блоков между собой и с перекрытиями. При этом наблюдается взаимное смещение панелей, раскрытие вертикальных стыков, отклонение панелей от первоначального положения, а в некоторых случаях обрушение панелей (рис. 160).
Для зданий с несущими стенами из местных материалов (сырцовый кирпич, глиносаманные блоки, туфовые блоки и др.) характерны следующие повреждения: появление трещин в стенах (рис. 17); обрушение торцовых стен; сдвиг, а иногда и обрушение перекрытий; обрушение отдельно стоящих стоек и особенно печей и дымовых труб.
Разрушение зданий в полной мере характеризуют законы разрушения. Под законами разрушения здания по-
Разрушение каркасного здания при землетрясении в Китае (а) и разрушение панельных зданий при землетрясении в Румынии (б) нимается зависимость между вероятностью его повреждения и интенсивностью проявления землетрясения в баллах. Законы разрушения зданий получены на основе анализа статистических материалов по разрушению жилых, общественных и промышленных зданий от воздействия землетрясений разной интенсивности.
Характерные повреждения кирпичных простенков при сейсмическом воздействии
Для построения кривой, аппроксимирующей вероятности наступления не менее определенной степени повреждения зданий, используется нормальный закон распределения повреждений. При этом учитывается, что для одного и того же здания может рассматриваться не одна, а пять степеней разрушения, т.е. после разрушения наступает одно из пяти несовместимых событий. Значения математического ожидания М мо интенсивности землетрясения в баллах, вызывающего не менее определенных степеней разрушения зданий, приведены в таблице 1.
Таблица 1
Математические ожидания М мо законов разрушения зданий
Классы зданий по MMSK-86 |
Степени разрушения зданий |
||||
Легкая d = 1 |
Умеренная d = 2 |
Частичное разрушение d = 4 |
|||
Математические ожидания М законов разрушения |
|||||
Использование данных таблицы 1 позволяет прогнозировать вероятность повреждения зданий различных классов при заданной интенсивности землетрясения.
Нагрузки и воздействия на многоэтажные здания определяются на основании задания на проектирование, глав СНиП, руководств и справочников.
Постоянные нагрузки
Постоянные нагрузки практически не изменяются во времени и поэтому учитываются во всех вариантах загружения для рассматриваемой в расчете стадии работы конструкции.
К постоянным нагрузкам относятся: вес несущих и ограждающих конструкций, вес и давление грунтов, воздействия предварительного напряжения конструкций. Постоянными можно считать условно и нагрузки от веса стационарного оборудования и инженерных коммуникаций, имея, однако, в виду, что в некоторых условиях (ремонт, перепланировка) они могут изменяться.
Нормативные значения постоянных нагрузок определяются по данным о весе готовых элементов и изделий или вычисляются по проектным размерам конструкций и плотности материалов (табл. 19.2) (плотности, равной 1 кг/м3, соответствует удельный вес, равный 9,81 Н/м3=0,01 кН/м3).
Нагрузка от веса несущих стальных конструкций. Эта нагрузка зависит от вида и размеров конструктивной системы, прочности используемой стали, приложенных внешних нагрузок и других факторов.
Нормативная нагрузка (кН/м2 площади перекрытий) от веса несущих конструкций из стали класса С38/23 приближенно равна
При расчете ригелей и балок перекрытий учитывается часть нагрузки g, равная (0,3+6/mэт)g - для рамных систем, (0,2+4/mэт)g - для связевых систем, где mєт - число этажей здания, mэт>20.
Для несущих конструкций из сталей класса С38/23 с расчетным сопротивлением R и более высокого класса с расчетным сопротивлением R" нагрузка от их веса определяется соотношением Нормативное значение веса 1 м2 стены, перекрытия составляет приближенно: а) для наружных стен из облегченной кладки или бетонных панелей 2,5-5 кН/м2, из эффективных панелей 0,6-1,2 кН/м2; б) для внутренних стен и перегородок на 30-50% меньше, чем для наружных; в) для несущей плиты перекрытия вместе с полом при железобетонных панелях и настилах 3-5 кН/м2, при монолитных плитах из легкого бетона по стальному профилированному настилу 1,5-2 кН/м2; с добавлением при необходимости нагрузки от подвесного потолка 0,3-0,8 кН/м2,
При вычислении расчетных нагрузок от веса многослойных конструкций принимают, если необходимо, свои коэффициенты перегрузки для разных слоев.
Нагрузку от веса стен и постоянных перегородок учитывают по фактическому ее положению. Если сборные элементы стен прикрепляются непосредственно к колоннам каркаса, при расчете перекрытий вес стен не учитывается.
Нагрузку от веса переставляемых перегородок прикладывают к элементам перекрытия в наиболее неблагоприятном для них положении. При расчете колонн эта нагрузка обычно осредняется по площади перекрытий.
Нагрузки от веса перекрытия распределены практически равномерно и при расчете элементов перекрытия и колонн собираются с соответствующих грузовых площадей.
В современных многоэтажных зданиях со стальным каркасом интенсивность суммы нормативных нагрузок от веса стен и перекрытий, отнесенная к 1 м2 перекрытий, ориентировочно равна 4-7 кН/м2. Отношение всех постоянных нагрузок здания (включая собственный вес стальных конструкций, плоских и пространственных ферм жесткости) к его объему изменяется в пределах от 1,5 до 3 кН/м3.
Временные нагрузки
Временные нагрузки на перекрытия. Нагрузки на перекрытия, обусловленные весом людей, мебели и подобного легкого оборудования, устанавливаются в СНиП в виде эквивалентных нагрузок, равномерно распределенных по площади помещений. Их нормативные значения для жилых и общественных зданий составляют: в основных помещениях 1,5-2 кН/м2; в залах 2-4 кН/м2; в вестибюлях, коридорах, лестницах 3-4 кН/м2, а коэффициенты перегрузки - 1,3-1,4.
Согласно пп. 3.8, 3.9 СНиП временные нагрузки принимаются с учетом понижающих коэффициентов α1, α2 (при расчете балок и ригелей) и η1, η2 (При расчете колони и фундаментов). Коэффициенты η1, η2 относятся к сумме временных нагрузок на нескольких перекрытиях и учитываются при определении продольных сил. Узловые изгибающие моменты в колоннах следует принимать без учета коэффициентов η1, η2 так как основное влияние на изгибающий момент оказывает временная нагрузка на ригелях одного, примыкающего к узлу перекрытия.
Рассматривая возможные схемы расположения временных нагрузок на перекрытиях здания, в проектной практике обычно исходят из принципа наиболее неблагоприятного загружения. Например, для оценки наибольших пролетных моментов в ригеле рамной системы учитывают схемы шахматного расположения временных нагрузок, в расчете рам, стволов жесткости и фундаментов принимают во внимание не только сплошное загружение всех перекрытий, но и возможные варианты частичного, в том числе одностороннего, загружения. Некоторые из таких схем очень условны и приводят к неоправданным запасам в конструкциях и основаниях. определяемая по указаниям СНиП, имеет в основном значение для конструкций покрытия многоэтажного здания и мало влияет на суммарные усилия в ниже расположенных конструкциях. Работа конструкций многоэтажного здания, их жесткость, прочность и устойчивость существенно зависят от правильности учета ветровой нагрузки.
Согласно расчетное значение статической составляющей ветровой нагрузки, кН/м2, определяется по формуле
В практических расчетах нормативную эпюру коэффициента kz заменяют трапециевидной с нижней и верхней ординатами kн≥kв, определяемыми из условий эквивалентности эпюр по моменту и поперечной силе в нижнем сечении здания. С погрешностью не более 2% ординату kн можно считать фиксированной и равной нормативной (1 - для местности типа А; 0,65 - для местности типа Б), а для kв принимать в зависимости от высоты здания и типа местности следующие значения:
Ордината на уровне z:kzэ = kн+(kв-kн) z/H. В здании ступенчатой формы (рис. 19.1) нормативная эпюра приводится к трапециевидной по отдельным зонам разной высоты, отсчитываемой от низа здания. Возможны способы приведения и с иным членением здания на зоны.
При расчете здания в целом статическая составляющая ветровой нагрузки, кН, в направлении осей х и у (рис, 19.2) на 1 м высоты определяется как результирующая аэродинамических сил, действующих в этих направлениях, и выражается через коэффициенты общего сопротивления сх, сy и горизонтальные размеры В, L проекций здания на плоскости, перпендикулярные соответствующим осям:
Для зданий призматической формы с прямоугольным планом при угле скольжения β=0 коэффициент су=0, а сx определяется по табл. 19.1, составленной с учетом данных зарубежных и отечественных исследований и норм.
Если β=90°, то cx=0, а значение сy находят по той же таблице, поменяв местами обозначения В, L на плане здания.
При ветре под углом β=45° значения сx, сy приведены в виде дроби в табл. 19.2, при этом более длинной считается сторона плана В, перпендикулярная оси х. Вследствие неравномерного распределения давления ветра на стены при β=45° и B/L≥2 следует учитывать возможный аэродинамический эксцентриситет в приложении нагрузки qxc, перпендикулярной более длинной стороне, равный 0,15 В, и сответствующий крутящий момент с интенсивностью, кН*м на 1 м высоты
Если на здании есть лоджии, балконы, выступающие вертикальные ребра, к нагрузкам qxc, qyc следует добавить силы трения на обеих стенах, параллельных оси х, у, равные:
При угле β=45° эти силы действуют только в плоскости наветренных стен, и вызываемые ими крутящие моменты с интенсивностью mкр"" = 0,05q(z)LB уравновешиваются. Ho если одна из наветренных стен гладкая, момент mкр"" от сил трения на другой стене нужно учесть. Аналогичные условия возникают при
Если геометрический центр плана здания не совпадает с центром жесткости (или центром кручения) несущей системы, в расчете необходимо учесть дополнительные эксцентриситеты приложения ветровых нагрузок.
Ветровую нагрузку на элементы наружной стены, ригели связевых и рамно-связевых систем, передающие давление ветра от наружной стены на диафрагмы и стволы жесткости, определяют по формуле (19.2), пользуясь коэффициентами давления с+, с- (положительное давление направлено внутрь здания) и нормативными значениями kz. Коэффициенты давления для зданий с прямоугольным планом (с некоторым уточнением данных СНиП):
В случае β=0 для обеих стен, параллельных потоку маются значения су, равные:
Эти же данные используют при 0=90° для сх, поменяв местами обозначения В, L на плане здания.
Для расчета того или иного элемента следует выбрать наиболее неблагоприятные из приведенных значений с+ и с- и увеличить их по абсолютной величине на 0,2 для учета возможного внутреннего давления в здании. Необходимо считаться с резким возрастанием отрицательных давлений в угловых зонах зданий, где с-=-2, особенно при расчете облегченных стен, стекла, их креплений; при этом ширину зоны по имеющимся данным следует увеличить до 4-5 м, но не более 1/10 длины стены.
Влияние окружающей застройки, усложнения формы зданий на аэродинамические коэффициенты устанавливается экспериментально.
При действии ветрового потока возможны: 1) боковое раскачивание аэродинамически неустойчивых гибких зданий (вихревое возбуждение ветрового резонанса зданий цилиндрической, призматической и слабо пирамидальной формы; галопирование зданий плохо обтекаемой формы, связанное с резким изменением боковой возмущающей силы при малых изменениях направления ветра и с неблагоприятным соотношением жесткостей здания при изгибе и кручении), и руководство; 2) колебания здания в плоскости потока при пульсациониом воздействии порывистого ветра. Колебания первого типа могут быть более опасными, особенно при наличии соседних высоких зданий, но методы их учета разработаны недостаточно и для оценки условий их возникновения необходимы испытания крупных аэроупругих моделей.
Динамическая составляющая ветровой нагрузки при колебаниях здания в плоскости потока зависит от изменчивости пульсаций скорости vп, характеризуемой стандартом σv (рис.19.3). Скоростной напор ветра в момент времени t при плотности воздуха р
Для учета крайних значений пульсаций принято vп=2,5σv, что соответствует (при нормальной функции распределения) вероятности превышения принятой пульсации в произвольный момент времени около 0,006.
Наибольший вклад в динамические усилия и перемещения вносят пульсации, частота которых близка или равна частоте собственных колебаний системы. Возникающие инерционные силы и определяют динамическую составляющую ветровой нагрузки, учитываемую согласно СНиП для зданий высотой более 40 м в предположении, что форма собственных колебаний здания описывается прямой линией,
Поскольку погрешность в оценке Т1 незначительно влияет на ξ1 можно рекомендовать для стальных рамных каркасов T1=0,1mэт, для связевых и рамно-связевых каркасов с железобетонными диафрагмами и стволами жесткости T1=0,06 mэт, где mэт - число этажей здания.
Пренебрегая небольшими отклонениями коэффициента формы ϗ от прямой линии, для суммарной ветровой нагрузки (статической и динамической) в зданиях постоянной ширины принимают трапециевидную эпюру, ординаты которой:
В зависимости от рассматриваемого направления ветра, принятых для qс значений (расчетные, нормативные) и размерностей (кН/м2, кН/м) получают соответствующие суммарные нагрузки.
Ускорение горизонтальных колебаний верха здания, необходимое для расчета по второй группе предельных состояний, определяется делением нормативного значения динамической составляющей (без учета коэффициента перегрузки) на соответствующую массу. Если расчет ведется на нагрузку qх, кН/м (рис. 19.2), то
Значение m оценивается делением постоянных нагрузок и 50% временных вертикальных нагрузок, отнесенных к 1 м2 перекрытия, на ускорение свободного падения.
Ускорения от нормативных значений ветровой нагрузки превышаются в среднем раз в пять лет. Если признается возможным снизить период повторяемости до года (или месяца), то к значению нормативного скоростного напора q0 вводится коэффициент 0,8 (или 0,5).
Сейсмические воздействия. При строительстве многоэтажных зданий в сейсмических районах несущие конструкции необходимо рассчитать как на основные сочетания, состоящие из обычно действующих нагрузок (включая ветровую), так и на особые сочетания с учетом сейсмических воздействий (но исключая ветровую нагрузку). При расчетной сейсмичности более 7 баллов расчет на особые сочетания нагрузок является, как правило, определяющим.
Расчетные сейсмические силы и правила их совместного учета с другими нагрузками принимаются по СНиП. С увеличением периода собственных колебаний здания сейсмические силы, в отличие от динамической составляющей ветровой, нагрузки, снижаются или не изменяются. Для более точной оценки периодов собственных колебаний при учете сейсмических воздействий можно использовать способы.
Температурные воздействия. Изменение температуры окружающего воздуха и солнечная радиация вызывают температурные деформации элементов конструкции: удлинение, укорочение, искривление.
На стадии эксплуатации многоэтажного здания температура внутренних конструкций практически не изменяется. Сезонные и суточные изменения температуры наружного воздуха и солнечной радиации влияют прежде всего на наружные стены. Если их прикрепление к каркасу не препятствует температурным деформациям стены, каркас не будет испытывать дополнительных усилий. В случаях, когда основные несущие элементы (например, колонны) частично или полностью вынесены за грань наружной стены, они непосредственно подвергаются температурным климатическим воздействиям, которые необходимо учесть при проектировании каркаса.
Температурные воздействия на стадии возведения или принимают с грубыми допущениями из-за неопределенности температуры замыкания конструкций, или пренебрегают ими, учитывая снижение во времени вызванных ими усилий вследствие неупругих деформаций в узлах и элементах несущей системы.
Влияние температурных климатических воздействий на работу несущей системы в многоэтажных зданиях с металлическим каркасом изучено недостаточно.