Что такое поперечный изгиб балки. Понятие о деформации изгиба
Чистым изгибом называется такой вид изгиба, при котором имеет место действие только изгибающего момента (рис. 3.5, а). Мысленно проведем плоскость сечения I-I перпендикулярно продольной оси балки на расстоянии * от свободного конца балки, к которому приложен внешний момент m z . Осуществим действия, аналогичные тем, которые были выполнены нами при определении напряжений и деформаций при кручении, а именно:
- 1) составим уравнения равновесия мысленно отсеченной части детали;
- 2) определим деформацию материала детали исходя из условий совместности деформаций элементарных объемов данного сечения;
- 3) решим уравнения равновесия и совместности деформаций.
Из условия равновесия отсеченного участка балки (рис. 3.5, б)
получим, что момент внутренних сил M z равен моменту внешних сил т: М = т.
Рис. 3.5.
Момент внутренних сил создается нормальными напряжениями o v , направленными вдоль оси х. При чистом изгибе нет внешних сил, поэтому сумма проекций внутренних сил на любую координатную ось равна нулю. На этом основании запишем условия равновесия в виде равенств
где А - площадь поперечного сечения балки (стержня).
При чистом изгибе внешние силы F x , F, F v а также моменты внешних сил т х, т у равны нулю. Поэтому остальные уравнения равновесия тождественно равны нулю.
Из условия равновесия при о^О следует, что
нормальные напряжение с х в поперечном сечении принимают как положительные, так и отрицательные значения. (Опыт показывает, что при изгибе материал нижней стороны бруса на рис. 3.5, а растянут, а верхней - сжат.) Следовательно, в поперечном сечении при изгибе есть такие элементарные объемы (переходного слоя от сжатия к растяжению), в которых удлинение или сжатие отсутствует. Это - нейтральный слой. Линия пересечения нейтрального слоя с плоскостью поперечного сечения называется нейтральной линией.
Условия совместности деформаций элементарных объемов при изгибе формируется на основе гипотезы плоских сечений: плоские до изгиба поперечные сечения балки (см. рис. 3.5, б) останутся плоскими и после изгиба (рис. 3.6).
В результате действия внешнего момента брус изгибается, а плоскости сечений I-I и II-II поворачиваются друг относительно друга на угол dy (рис. 3.6, б). При чистом изгибе деформация всех сечений вдоль оси балки одинакова, поэтому радиус р к кривизны нейтрального слоя балки вдоль оси х один и тот же. Так как dx = р K dip, то кривизна нейтрального слоя равна 1 / р к = dip / dx и постоянна по длине балки.
Нейтральный слой не деформируется, его длина до и после деформации равна dx. Ниже этого слоя материал растянут, выше - сжат.
Рис. 3.6.
Значение удлинения растянутого слоя, находящегося на расстоянии у от нейтрального, равно ydq. Относительное удлинение этого слоя:
Таким образом, в принятой модели получено линейное распределение деформаций в зависимости от расстояния данного элементарного объема до нейтрального слоя, т.е. по высоте сечения балки. Полагая, что нет взаимного надавливания параллельных слоев материала друг на друга (о у = 0, а, = 0), запишем закон Гука для линейного растяжения:
Согласно (3.13) нормальные напряжения в поперечном сечении балки распределены по линейному закону. Напряжение элементарного объема материала, наиболее удаленного от нейтрального слоя (рис. 3.6, в ), максимально и равно
? Задача 3.6
Определить предел упругости стального клинка толщиной / = 4 мм и длиной / = 80 см, если его изгиб в полуокружность не вызывает остаточной деформации.
Решение
Напряжение при изгибе o v = Еу / р к. Примем y max = t / 2и р к = / / к.
Предел упругости должен соответствовать условию с уп > c v = 1 / 2 кЕ t /1.
Ответ: о = ] / 2 к 2 10 11 4 10 _3 / 0,8 = 1570 МПа; предел текучести этой стали а т > 1800 МПа, что превышает а т самых прочных пружинных сталей. ?
? Задача 3 .7
Определить минимальный радиус барабана для намотки ленты толщиной / = 0,1 мм нагревательного элемента из никелевого сплава, при котором материал ленты пластически не деформируется. Модуль Е= 1,6 10 5 МПа, предел упругости о уп = 200 МПа.
Ответ: минимальный радиус р = V 2 ?ir/a yM = У? 1,6-10 11 0,1 10 -3 / (200 10 6) = = 0,04 м. ?
1. При совместном решении первого уравнения равновесия (3.12) и уравнения совместности деформаций (3.13) получим
Значение Е / р к ф 0 и одинаково для всех элементов dA площади интегрирования. Следовательно, данное равенство удовлетворяется только при условии
Этот интеграл называют статическим моментом площади поперечного сечения относительно оси z? Каков физический смысл этого интеграла?
Возьмем пластинку постоянной толщины /, но произвольного профиля (рис. 3.7). Подвесим эту пластинку в точке С так, чтобы она находилась в горизонтальном положении. Обозначим символом у м удельный вес материала пластинки, тогда вес элементарного объема площадью dA равен dq = уJdA. Так как пластинка находится в состоянии равновесия, то из равенства нулю проекций сил на ось у получим
где G = у M tA - вес пластинки.
Рис. 3.7.
Сумма моментов сил всех сил относительно оси z , проходящей в любом сечении пластинки, также равна нулю:
Учитывая, что Y c = G, запишем
Таким образом, если интеграл вида J xdA по площади А равен
нулю, то х с = 0. Это означает, что точка С совпадает с центром тяжести пластинки. Следовательно, из равенства S z = J ydA = 0 при из-
гибе следует, что центр тяжести поперечного сечения балки находится на нейтральной линии.
Следовательно, значение у с поперечного сечения балки равно нулю.
- 1. Нейтральная линия при изгибе проходит через центр тяжести поперечного сечения балки.
- 2. Центр тяжести поперечного сечения является центром приведения моментов внешних и внутренних сил.
Задача 3.8
Задача 3.9
2. При совместном решении второго уравнения равновесия (3.12) и уравнения совместности деформаций (3.13) получим
Интеграл J z = J y 2 dA называется моментом инерции поперечного
сечения балки (стержня) относительно оси z, проходящей через центр тяжести поперечного сечения.
Таким образом, M z = Е J z / р к. Учитывая, что с х = Ее х = Еу / р к и Е / р к = а х / у, получим зависимость нормальных напряжений о х при изгибе:
1. Напряжение изгиба в данной точке сечения не зависит от модуля нормальной упругости Е, но зависит от геометрического параметра поперечного сечения J z и расстояния у от данной точки до центра тяжести поперечного сечения.
2. Максимальное напряжение при изгибе имеет место в элементарных объемах, наиболее удаленных от нейтральной линии (см. рис. 3.6, в):
где W z - момент сопротивления поперечного сечения относительно оси Z-
Условие прочности при чистом изгибе аналогично условию прочности при линейном растяжении:
где [а м | - допускаемое напряжение при изгибе.
Очевидно, что внутренние объемы материала, особенно вблизи нейтральной оси, практически не нагружены (см. рис. 3.6, в). Это противоречит требованию минимизировать материалоемкость конструкции. Ниже будут показаны некоторые способы преодоления данного противоречия.
Для консольной балки, нагруженной распределенной нагрузкой интенсивностью кН/м и сосредоточенным моментом кН·м (рис. 3.12), требуется: построить эпюры перерезывающих сил и изгибающих моментов , подобрать балку круглого поперечного сечения при допускаемом нормальном напряжении кН/см2 и проверить прочность балки по касательным напряжениям при допускаемом касательном напряжении кН/см2. Размеры балки м; м; м.
Расчетная схема для задачи на прямой поперечный изгиб
Рис. 3.12
Решение задачи "прямой поперечный изгиб"
Определяем опорные реакции
Горизонтальная реакция в заделке равна нулю, поскольку внешние нагрузки в направлении оси z на балку не действуют.
Выбираем направления остальных реактивных усилий, возникающих в заделке: вертикальную реакцию направим, например, вниз, а момент – по ходу часовой стрелки. Их значения определяем из уравнений статики:
Составляя эти уравнения, считаем момент положительным при вращении против хода часовой стрелки, а проекцию силы положительной, если ее направление совпадает с положительным направлением оси y.
Из первого уравнения находим момент в заделке :
Из второго уравнения – вертикальную реакцию :
Полученные нами положительные значения для момента и вертикальной реакции в заделке свидетельствуют о том, что мы угадали их направления.
В соответствии с характером закрепления и нагружения балки, разбиваем ее длину на два участка. По границам каждого из этих участков наметим четыре поперечных сечения (см. рис. 3.12), в которых мы и будем методом сечений (РОЗУ) вычислять значения перерезывающих сил и изгибающих моментов.
Сечение 1. Отбросим мысленно правую часть балки. Заменим ее действие на оставшуюся левую часть перерезывающей силой и изгибающим моментом . Для удобства вычисления их значений закроем отброшенную нами правую часть балки листком бумаги, совмещая левый край листка с рассматриваемым сечением.
Напомним, что перерезывающая сила, возникающая в любом поперечном сечении, должна уравновесить все внешние силы (активные и реактивные), которые действуют на рассматриваемую (то есть видимую) нами часть балки. Поэтому перерезывающая сила должна быть равна алгебраической сумме всех сил, которые мы видим.
Приведем и правило знаков для перерезывающей силы: внешняя сила, действующая на рассматриваемую часть балки и стремящаяся «повернуть» эту часть относительно сечения по ходу часовой стрелки, вызывает в сечении положительную перерезывающую силу. Такая внешняя сила входит в алгебраическую сумму для определения со знаком «плюс».
В нашем случае мы видим только реакцию опоры , которая вращает видимую нами часть балки относительно первого сечения (относительно края листка бумаги) против хода часовой стрелки. Поэтому
кН.
Изгибающий момент в любом сечении должен уравновесить момент, создаваемый видимыми нами внешними усилиями, относительно рассматриваемого сечения. Следовательно, он равен алгебраической сумме моментов всех усилий, которые действуют на рассматриваемую нами часть балки, относительно рассматриваемого сечения (иными словами, относительно края листка бумаги). При этом внешняя нагрузка, изгибающая рассматриваемую часть балки выпуклостью вниз, вызывает в сечении положительный изгибающий момент. И момент, создаваемый такой нагрузкой, входит в алгебраическую сумму для определения со знаком «плюс».
Мы видим два усилия: реакцию и момент в заделке . Однако у силы плечо относительно сечения 1 равно нулю. Поэтому
кН·м.
Знак «плюс» нами взят потому, что реактивный момент изгибает видимую нами часть балки выпуклостью вниз.
Сечение 2. По-прежнему будем закрывать листком бумаги всю правую часть балки. Теперь, в отличие от первого сечения, у силы появилось плечо: м. Поэтому
кН; кН·м.
Сечение 3. Закрывая правую часть балки, найдем
кН;
Сечение 4. Закроем листком левую часть балки. Тогда
кН·м.
кН·м.
.
По найденным значениям строим эпюры перерезывающих сил (рис. 3.12, б) и изгибающих моментов (рис. 3.12, в).
Под незагруженными участками эпюра перерезывающих сил идет параллельно оси балки, а под распределенной нагрузкой q – по наклонной прямой вверх. Под опорной реакцией на эпюре имеется скачок вниз на величину этой реакции, то есть на 40 кН.
На эпюре изгибающих моментов мы видим излом под опорной реакцией . Угол излома направлен навстречу реакции опоры. Под распределенной нагрузкой q эпюра изменяется по квадратичной параболе, выпуклость которой направлена навстречу нагрузке. В сечении 6 на эпюре – экстремум, поскольку эпюра перерезывающей силы в этом месте проходит здесь через нулевое значение.
Определяем требуемый диаметр поперечного сечения балки
Условие прочности по нормальным напряжениям имеет вид:
,
где – момент сопротивления балки при изгибе. Для балки круглого поперечного сечения он равен:
.
Наибольший по абсолютному значению изгибающий момент возникает в третьем сечении балки: кН·см.
Тогда требуемый диаметр балки определяется по формуле
см.
Принимаем мм. Тогда
кН/см2 кН/см2.
«Перенапряжение» составляет
,
что допускается.
Проверяем прочность балки по наибольшим касательным напряжениям
Наибольшие касательные напряжения, возникающие в поперечном сечении балки круглого сечения, вычисляются по формуле
,
где – площадь поперечного сечения.
Согласно эпюре , наибольшее по алгебраической величине значение перерезывающей силы равно кН. Тогда
кН/см2 кН/см2,
то есть условие прочности и по касательным напряжениям выполняется, причем, с большим запасом.
Пример решения задачи "прямой поперечный изгиб" №2
Условие примера задачи на прямой поперечный изгиб
Для шарнирно опертой балки, нагруженной распределенной нагрузкой интенсивностью кН/м, сосредоточенной силой кН и сосредоточенным моментом кН·м (рис. 3.13), требуется построить эпюры перерезывающих сил и изгибающих моментов и подобрать балку двутаврового поперечного сечения при допускаемом нормальном напряжении кН/см2 и допускаемом касательном напряжении кН/см2. Пролет балки м.
Пример задачи на прямой изгиб – расчетная схема
Рис. 3.13
Решение примера задачи на прямой изгиб
Определяем опорные реакции
Для заданной шарнирно опертой балки необходимо найти три опорные реакции: , и . Поскольку на балку действуют только вертикальные нагрузки, перпендикулярные к ее оси, горизонтальная реакция неподвижной шарнирной опоры A равна нулю: .
Направления вертикальных реакций и выбираем произвольно. Направим, например, обе вертикальные реакции вверх. Для вычисления их значений составим два уравнения статики:
Напомним, что равнодействующая погонной нагрузки , равномерно распределенной на участке длиной l, равна , то есть равна площади эпюры этой нагрузки и приложена она в центре тяжести этой эпюры, то есть посредине длины.
;
кН.
Делаем проверку: .
Напомним, что силы, направление которых совпадает с положительным направлением оси y, проектируются (проецируются) на эту ось со знаком плюс:
то есть верно.
Строим эпюры перерезывающих сил и изгибающих моментов
Разбиваем длину балки на отдельные участки. Границами этих участков являются точки приложения сосредоточенных усилий (активных и/или реактивных), а также точки, соответствующие началу и окончанию действия распределенной нагрузки. Таких участков в нашей задаче получается три. По границам этих участков наметим шесть поперечных сечений, в которых мы и будем вычислять значения перерезывающих сил и изгибающих моментов (рис. 3.13, а).
Сечение 1. Отбросим мысленно правую часть балки. Для удобства вычисления перерезывающей силы и изгибающего момента , возникающих в этом сечении, закроем отброшенную нами часть балки листком бумаги, совмещая левый край листка бумаги с самим сечением.
Перерезывающая сила в сечении балки равна алгебраической сумме всех внешних сил (активных и реактивных), которые мы видим. В данном случае мы видим реакцию опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Равнодействующая погонной нагрузки равна нулю. Поэтому
кН.
Знак «плюс» взят потому, что сила вращает видимую нами часть балки относительно первого сечения (края листка бумаги) по ходу часовой стрелки.
Изгибающий момент в сечении балки равен алгебраической сумме моментов всех усилий, которые мы видим, относительно рассматриваемого сечения (то есть относительно края листка бумаги). Мы видим реакцию опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Однако у силы плечо равно нулю. Равнодействующая погонной нагрузки также равна нулю. Поэтому
Сечение 2. По-прежнему будем закрывать листком бумаги всю правую часть балки. Теперь мы видим реакцию и нагрузку q, действующую на участке длиной . Равнодействующая погонной нагрузки равна . Она приложена посредине участка длиной . Поэтому
Напомним, что при определении знака изгибающего момента мы мысленно освобождаем видимую нами часть балки от всех фактических опорных закреплений и представляем ее как бы защемленной в рассматриваемом сечении (то есть левый край листка бумаги нами мысленно представляется жесткой заделкой).
Сечение 3. Закроем правую часть. Получим
Сечение 4. Закрываем листком правую часть балки. Тогда
Теперь, для контроля правильности вычислений, закроем листком бумаги левую часть балки. Мы видим сосредоточенную силу P, реакцию правой опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Равнодействующая погонной нагрузки равна нулю. Поэтому
кН·м.
То есть все верно.
Сечение 5. По-прежнему закроем левую часть балки. Будем иметь
кН;
кН·м.
Сечение 6. Опять закроем левую часть балки. Получим
кН;
По найденным значениям строим эпюры перерезывающих сил (рис. 3.13, б) и изгибающих моментов (рис. 3.13, в).
Убеждаемся в том, что под незагруженным участком эпюра перерезывающих сил идет параллельно оси балки, а под распределенной нагрузкой q – по прямой, имеющей наклон вниз. На эпюре имеется три скачка: под реакцией – вверх на 37,5 кН, под реакцией – вверх на 132,5 кН и под силой P – вниз на 50 кН.
На эпюре изгибающих моментов мы видим изломы под сосредоточенной силой P и под опорными реакциями. Углы изломов направлены навстречу этим силам. Под распределенной нагрузкой интенсивностью q эпюра изменяется по квадратичной параболе, выпуклость которой направлена навстречу нагрузке. Под сосредоточенным моментом – скачок на 60 кН ·м, то есть на величину самого момента. В сечении 7 на эпюре – экстремум, поскольку эпюра перерезывающей силы для этого сечения проходит через нулевое значение (). Определим расстояние от сечения 7 до левой опоры.
Общие
понятия.
Деформация изгиба заключается в искривлении оси прямого стержня или в изменении начальной кривизны прямого стержня (рис. 6.1) . Ознакомимся с основными понятиями, которые используются при рассмотрении деформации изгиба.
Стержни, работающие на изгиб, называют балками .
Чистым называется изгиб, при котором изгибающий момент является единственным внутренним силовым фактором, возникающем в поперечном сечении балки.
Чаще, в поперечном сечении стержня наряду с изгибающим моментом возникает также и поперечная сила. Такой изгиб называют поперечным.
Плоским (прямым) называют изгиб, когда плоскость действия изгибающего момента в поперечном сечении проходит через одну из главных центральных осей поперечного сечения.
При косом изгибе плоскость действия изгибающего момента пересекает поперечное сечение балки по линии, не совпадающей ни с одной из главных центральных осей поперечного сечения.
Изучение деформации изгиба начнем со случая чистого плоского изгиба.
Нормальные напряжения и деформации при чистом изгибе.
Как уже было сказано, при чистом плоском изгибе в поперечном сечении из шести внутренних силовых факторов не равен нулю только изгибающий момент (рис. 6.1, в):
; (6.1)
Опыты, поставленные на эластичных моделях, показывают, что если на поверхность модели нанести сетку линий (рис. 6.1, а) , то при чистом изгибе она деформируется следующим образом (рис. 6.1, б) :
а) продольные линии искривляются по длине окружности;
б) контуры поперечных сечений остаются плоскими;
в) линии контуров сечений всюду пересекаются с продольными волокнами под прямым углом.
На основании этого можно предположить, что при чистом изгибе поперечные сечения балки остаются плоскими и поворачиваются так, что остаются нормальными к изогнутой оси балки (гипотеза плоских сечений при изгибе).
Рис. .
Замеряя длину продольных линий (рис. 6.1, б), можно обнаружить, что верхние волокна при деформации изгиба балки удлиняются, а нижние укорачиваются. Очевидно, что можно найти такие волокна, длина которых остается неизменной. Совокупность волокон, не меняющих своей длины при изгибе балки, называется нейтральным слоем (н. с.) . Нейтральный слой пересекает поперечное сечение балки по прямой, которая называется нейтральной линией (н. л.) сечения .
Для вывода формулы, определяющей величину нормальных напряжений, возникающих в поперечном сечении, рассмотрим участок балки в деформированном и не деформированном состоянии (рис. 6.2).
Рис. .
Двумя бесконечно малыми поперечными сечениями выделим элемент длиной. До деформации сечения, ограничивающие элемент, были параллельны между собой (рис. 6.2, а), а после деформации они несколько наклонились, образуя угол. Длина волокон, лежащих в нейтральном слое, при изгибе не меняется. Обозначим радиус кривизны следа нейтрального слоя на плоскости чертежа буквой. Определим линейную деформацию произвольного волокна, отстоящего на расстоянии от нейтрального слоя.
Длина этого волокна после деформации (длина дуги) равна. Учитывая, что до деформации все волокна имели одинаковую длину, получим, что абсолютное удлинение рассматриваемого волокна
Его относительная деформация
Очевидно, что, так как длина волокна, лежащего в нейтральном слое не изменилась. Тогда после подстановки получим
(6.2)
Следовательно, относительная продольная деформация пропорциональна расстоянию волокна от нейтральной оси.
Введем предположение, что при изгибе продольные волокна не надавливают друг на друга. При таком предположении каждое волокно деформируется изолировано, испытывая простое растяжение или сжатие, при котором. С учетом (6.2)
, (6.3)
т. е. нормальные напряжения прямо пропорциональны расстояниям рассматриваемых точек сечения от нейтральной оси.
Подставим зависимость (6.3) в выражение изгибающего момента в поперечном сечении (6.1)
Вспомним, что интеграл представляет собой момент инерции сечения относительно оси
Или
(6.4)
Зависимость (6.4) представляет собой закон Гука при изгибе, поскольку она связывает деформацию (кривизну нейтрального слоя) с действующим в сечении моментом. Произведение носит название жесткости сечения при изгибе, Н· м 2 .
Подставим (6.4) в (6.3)
(6.5)
Это и есть искомая формула для определения нормальных напряжений при чистом изгибе балки в любой точке ее сечения.
Для того, чтобы установить, где в поперечном сечении находится нейтральная линия подставим значение нормальных напряжений в выражение продольной силы и изгибающего момента
Поскольку,
то
(6.6)
(6.7)
Равенство (6.6) указывает, что ось нейтральная ось сечения проходит через центр тяжести поперечного сечения.
Равенство (6.7) показывает что и - главные центральные оси сечения.
Согласно (6.5) наибольшей величины напряжения достигают в волокнах наиболее удаленных от нейтральной линии
Отношение представляет собой осевой момент сопротивления сечения относительно его центральной оси, значит
Значение для простейших поперечных сечений следующее:
Для прямоугольного поперечного сечения
, (6.8)
где - сторона сечения перпендикулярная оси;
Сторона сечения параллельная оси;
Для круглого поперечного сечения
, (6.9)
где - диаметр круглого поперечного сечения.
Условие прочности по нормальным напряжениям при изгибе можно записать в виде
(6.10)
Все полученные формулы получены для случая чистого изгиба прямого стержня. Действие же поперечной силы приводит к тому, что гипотезы, положенные в основу выводов, теряют свою силу. Однако практика расчетов показывает, что и при поперечном изгибе балок и рам, когда в сечении кроме изгибающего момента действует еще продольная сила и поперечная сила, можно пользоваться формулами, приведенными для чистого изгиба. Погрешность при этом получается незначительной.
Определение поперечных сил и изгибающих моментов.
Как уже было сказано, при плоском поперечном изгибе в поперечном сечении балки возникают два внутренних силовых фактора и.
Перед определением и определяют реакции опор балки (рис. 6.3, а), составляя уравнения равновесия статики.
Для определения и применим метод сечений. В интересующем нас месте сделаем мысленный разрез балки, например, на расстоянии от левой опоры. Отбросим одну из частей балки, например правую, и рассмотрим равновесие левой части (рис. 6.3, б). Взаимодействие частей балки заменим внутренними усилиями и.
Установим следующие правила знаков для и:
- Поперечная сила в сечении положительна, если ее векторы стремятся вращать рассматриваемое сечение по часовой стрелке ;
- Изгибающий момент в сечении положителен, если он вызывает сжатие верхних волокон.
Рис. .
Для определения данных усилий используем два уравнения равновесия:
1. ; ; .
2. ;
Таким образом,
а) поперечная сила в поперечном сечении балки численно равна алгебраической сумме проекций на поперечную ось сечения всех внешних сил, действующих по одну сторону от сечения;
б) изгибающий момент в поперечном сечении балки численно равен алгебраической сумме моментов (вычисленных относительно центра тяжести сечения) внешних сил, действующих по одну сторону от данного сечения.
При практическом вычислении руководствуются обычно следующим:
- Если внешняя нагрузка стремится повернуть балку относительно рассматриваемого сечения по часовой стрелке, (рис. 6.4, б) то в выражении для она дает положительное слагаемое.
- Если внешняя нагрузка создает относительно рассматриваемого сечения момент, вызывающий сжатие верхних волокон балки (рис. 6.4, а), то в выражении для в этом сечении она дает положительное слагаемое.
Рис. .
Построение эпюр и в балках.
Рассмотрим двухопорную балку (рис. 6.5, а) . На балку действует в точке сосредоточенный момент, в точке - сосредоточенная сила и на участке - равномерно распределенная нагрузка интенсивностью.
Определим опорные реакции и (рис. 6.5, б) . Равнодействующая распределенной нагрузки равна, а линия действия ее проходит через центр участка. Составим уравнения моментов относительно точек и.
Определим поперечную силу и изгибающий момент в произвольном сечений, расположенном на участке на расстоянии от точки А (рис. 6.5, в) .
(рис. 6.5, г). Расстояние может изменяться в пределах ().
Значение поперечной силы не зависит от координаты сечения, следовательно, во всех сечениях участка поперечные силы одинаковы и эпюра имеет вид прямоугольника. Изгибающий момент
Изгибающий момент изменяется по линейному закону. Определим ординаты эпюры для границ участка.
Определим поперечную силу и изгибающий момент в произвольном сечений, расположенном на участке на расстоянии от точки (рис. 6.5, д). Расстояние может изменяться в пределах ().
Поперечная сила изменяется по линейному закону. Определим для границ участка.
Изгибающий момент
Эпюра изгибающих моментов на этом участке будет параболической.
Чтобы определить экстремальное значение изгибающего момента, приравниваем к нулю производную от изгибающего момента по абсциссе сечения:
Отсюда
Для сечения с координатой значение изгибающего момента будет составлять
В результате получаем эпюры поперечных сил (рис. 6.5, е) и изгибающих моментов (рис. 6.5, ж).
Дифференциальные зависимости при изгибе.
(6.11)
(6.12)
(6.13)
Эти зависимости позволяют установить некоторые особенности эпюр изгибающих моментов и поперечных сил:
Н а участках, где нет распределенной нагрузки, эпюры ограничены прямыми, параллельными нулевой линии эпюры, а эпюры в общем случае наклонными прямыми .
Н а участках, где к балке приложена равномерно распределенная нагрузка, эпюра ограничена наклонными прямыми, а эпюра - квадратичными параболами с выпуклостью, обращенной в сторону, противоположную направлению действия нагрузки .
В сечениях, где, касательная к эпюре параллельна нулевой линии эпюры .
Н а участках, где, момент возрастает; на участках, где, момент убывает .
В сечениях, где к балке приложены сосредоточенные силы, на эпюре будут скачки на величину приложенных сил, а на эпюре будут переломы .
В сечениях, где к балке приложены сосредоточенные моменты, на эпюре будут скачки на величину этих моментов.
Ординаты эпюры пропорциональны тангенсу угла наклона касательной к эпюре.
Задача. Построить эпюры Q и M для статически неопределимой балки. Вычислим балки по формуле:
n = ΣR - Ш — 3 = 4 — 0 — 3 = 1
Балка один раз статически неопределима, значит одна из реакций является «лишней» неизвестной . За «лишнюю» неизвестную примем реакцию опоры В — R В .
Статически определимая балка, которая получается из заданной путем удаления «лишней» связи называется основной системой (б).
Теперь эту систему следует представить эквивалентной заданной. Для этого загружаем основную систему заданной нагрузкой, а в точке В приложим «лишнюю» реакцию R В (рис.в ).
Однако для эквивалентности этого недостаточно , поскольку в такой балке точка В может перемещаться по вертикали , а в заданной балке (рис.а ) такого произойти не может. Поэтому добавляем условие , что прогиб т. В в основной системе должен быть равен 0 . Прогиб т. В складывается из прогиба от действующей нагрузки Δ F и от прогиба от «лишней» реакции Δ R .
Тогда составляем условие совместности перемещений :
Δ F + Δ R =0 (1)
Теперь остается вычислить эти перемещения (прогибы ).
Загружаем основную систему заданной нагрузкой (рис.г) и построим грузовую эпюру М F (рис. д ).
В т.В приложим и построим эп. (рис.е,ж ).
По формуле Симпсона определим прогиб от действующей нагрузки .
Теперь определим прогиб от действия «лишней» реакции R В , для этого загружаем основную систему R В (рис.з ) и строим эпюру моментов от ее действия М R (рис. и ).
Составляем и решаем уравнение (1) :
Построим эп. Q
и М
(рис. к,л
).
Строим эпюру Q.
Построим эпюру М методом характерных точек . Расставляем точки на балке — это точки начала и конца балки (D,A ), сосредоточенного момента (B ), а также отметим в качестве характерной точки середину равномерно распределенной нагрузки (K ) — это дополнительная точка для построения параболической кривой.
Определяем изгибающие моменты в точках. Правило знаков см. — .
Момент в т. В будем определять следующим образом. Сначала определим:
Точку К возьмем в середине участка с равномерно распределенной нагрузкой.
Строим эпюру M . Участок АВ – параболическая кривая (правило «зонтика»), участок ВD – прямая наклонная линия .
Для балки определить опорные реакции и построить эпюры изгибающих моментов (М ) и поперечных сил (Q ).
- Обозначаем опоры буквами А и В и направляем опорные реакции R А и R В .
Составляем уравнения равновесия .
Проверка
Записываем значения R А и R В на расчетную схему .
2. Построение эпюры поперечных сил методом сечений . Сечения расставляем на характерных участках (между изменениями). По размерной нитке – 4 участка, 4 сечения .
сеч. 1-1 ход слева .
Сечение проходит по участку с равномерно распределенной нагрузкой , отмечаем размер z 1 влево от сечения до начала участка . Длина участка 2 м. Правило знаков для Q — см.
Строим по найденным значением эпюру Q .
сеч. 2-2 ход справа .
Сечение вновь проходит по участку равномерно распределенной нагрузкой, отмечаем размер z 2 вправо от сечения до начала участка. Длина участка 6 м.
Строим эпюру Q .
сеч. 3-3 ход справа .
сеч. 4-4 ход справа.
Строим эпюру Q .
3. Построение эпюры М методом характерных точек .
Характерная точка – точка, сколь-либо заметная на балке. Это точки А , В , С , D , а также точка К , в которой Q =0 и изгибающий момент имеет экстремум . Также в середине консоли поставим дополнительную точку Е , поскольку на этом участке под равномерно распределенной нагрузкой эпюра М описывается кривой линией, а она строится, как минимум, по 3 точкам.
Итак, точки расставлены, приступаем к определению в них значений изгибающих моментов . Правило знаков — см. .
Участки NA, AD – параболическая кривая (правило «зонтика» у механических специальностей или «правило паруса» у строительных), участки DС, СВ – прямые наклонные линии.
Момент в точке D следует определять как слева, так и справа от точки D . Сам момент в эти выражения не входит . В точке D получим два значения с разницей на величину m – скачок на его величину.
Теперь следует определить момент в точке К (Q =0). Однако сначала определим положение точки К , обозначив расстояние от нее до начала участка неизвестным х .
Т. К принадлежит второму характерному участку, его уравнение для поперечной силы (см. выше)
Но поперечная сила в т. К равна 0 , а z 2 равняется неизвестному х .
Получаем уравнение:
Теперь, зная х , определим момент в точке К с правой стороны.
Строим эпюру М . Построение выполним для механических специальностей, откладывая положительные значения вверх от нулевой линии и используя правило «зонтика».
Для заданной схемы консольной балки требуется построить эпюры поперечной силы Q и изгибающего момента M, выполнить проектировочный расчет, подобрав круглое сечение.
Материал — дерево, расчетное сопротивление материала R=10МПа, М=14кН·м,q=8кН/м
Строить эпюры в консольной балке с жесткой заделкой можно двумя способами — обычным, предварительно определив опорные реакции, и без определения опорных реакций, если рассматривать участки, идя от свободного конца балки и отбрасывая левую часть с заделкой. Построим эпюры обычным способом.
1. Определим опорные реакции .
Равномерно распределенную нагрузку q заменим условной силой Q= q·0,84=6,72 кН
В жесткой заделке три опорные реакции — вертикальная, горизонтальная и момент, в нашем случае горизонтальная реакция равна 0.
Найдем вертикальную реакцию опоры R A и опорный момент М A из уравнений равновесия.
На первых двух участках справа поперечная сила отсутствует. В начале участка с равномерно распределенной нагрузкой (справа) Q=0
, в заделеке — величине реакции R A.
3. Для построения составим выражения для их определения на участках. Эпюру моментов построим на волокнах, т.е. вниз.
(эпюра единичных моментов уже была построена ранее)
Решаем уравнение (1), сокращаем на EI
Статическая неопределимость раскрыта , значение «лишней» реакции найдено. Можно приступать к построению эпюр Q и M для статически неопределимой балки... Зарисовываем заданную схему балки и указываем величину реакции R b . В данной балке реакции в заделке можно не определять, если идти ходом справа.
Построение эпюры Q для статически неопределимой балки
Строим эпюру Q.
Построение эпюры М
Определим М в точке экстремума – в точке К . Сначала определим её положение. Обозначим расстояние до неё как неизвестное «х ». Тогда
Строим эпюру М.
Определение касательных напряжений в двутавровом сечении . Рассмотрим сечение двутавра. S x =96,9 см 3 ; Yх=2030 см 4 ; Q=200 кН
Для определения касательного напряжения применяется формула ,где Q — поперечная сила в сечении, S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение
Вычислим максимальное касательное напряжение:
Вычислим статический момент для верхней полки:
Теперь вычислим касательные напряжения:
Строим эпюру касательных напряжений:
Проектный и проверочный расчеты. Для балки с построенными эпюрами внутренних усилий подобрать сечение в виде двух швеллеров из условия прочности по нормальным напряжениям. Проверить прочность балки, используя условие прочности по касательным напряжениям и энергетический критерий прочности. Дано:
Покажем балку с построенными эпюрами Q и М
Согласно эпюре изгибающих моментов опасным является сечение С, в котором М С =М max =48,3кНм.
Условие прочности по нормальным напряжениям для данной балки имеет вид σ max =M C /W X ≤σ adm . Требуется подобрать сечение из двух швеллеров.
Определим необходимое расчетное значение осевого момента сопротивления сечения:
Для сечения в виде двух швеллеров согласно принимаем два швеллера №20а , момент инерции каждого швеллера I x =1670см 4 , тогда осевой момент сопротивления всего сечения:
Перенапряжение (недонапряжение) в опасных точках посчитаем по формуле: Тогда получим недонапряжение :
Теперь проверим прочность балки, исходя из условия прочности по касательным напряжениям. Согласно эпюре поперечных сил опасными являются сечения на участке ВС и сечение D. Как видно из эпюры, Q max =48,9 кН.
Условие прочности по касательным напряжениям имеет вид:
Для швеллера №20 а: статический момент площади S x 1 =95,9 см 3 , момент инерции сечения I x 1 =1670 см 4 , толщина стенки d 1 =5,2 мм, средняя толщина полки t 1 =9,7 мм, высота швеллера h 1 =20 см, ширина полки b 1 =8 см.
Для поперечного сечения из двух швеллеров:
S x = 2S x 1 =2·95,9=191,8 см 3 ,
I x =2I x 1 =2·1670=3340 см 4 ,
b=2d 1 =2·0,52=1,04 см.
Определяем значение максимального касательного напряжения:
τ max =48,9·10 3 ·191,8·10 −6 /3340·10 −8 ·1,04·10 −2 =27МПа.
Как видно, τ max <τ adm (27МПа<75МПа).
Следовательно, условие прочности выполняется.
Проверяем прочность балки по энергетическому критерию .
Из рассмотрения эпюр Q и М следует, что опасным является сечение С, в котором действуют M C =M max =48,3 кНм и Q C =Q max =48,9 кН.
Проведем анализ напряженного состояния в точках сечения С
Определим нормальные и касательные напряжения на нескольких уровнях (отмечены на схеме сечения)
Уровень 1-1: y 1-1 =h 1 /2=20/2=10см.
Нормальные и касательные напряжения:
Главные напряжения:
Уровень 2−2: y 2-2 =h 1 /2−t 1 =20/2−0,97=9,03см.
Главные напряжения:
Уровень 3−3: y 3-3 =h 1 /2−t 1 =20/2−0,97=9,03см.
Нормальные и касательные напряжения:
Главные напряжения:
Экстремальные касательные напряжения:
Уровень 4−4: y 4-4 =0.
(в середине нормальные напряжения равны нулю, касательные максимальны, их находили в проверке прочности по касательным напряжениям)
Главные напряжения:
Экстремальные касательные напряжения:
Уровень 5−5:
Нормальные и касательные напряжения:
Главные напряжения:
Экстремальные касательные напряжения:
Уровень 6−6:
Нормальные и касательные напряжения:
Главные напряжения:
Экстремальные касательные напряжения:
Уровень 7−7:
Нормальные и касательные напряжения:
Главные напряжения:
Экстремальные касательные напряжения:
В соответствии с выполненными расчетами эпюры напряжений σ, τ, σ 1 , σ 3 , τ max и τ min представлены на рис.
Анализ этих эпюр показывает , что в сечении балки опасными являются точки на уровне 3-3 (или 5-5 ), в которых:
Используя энергетический критерий прочности, получим
Из сравнения эквивалентного и допускаемого напряжений следует, что условие прочности также выполняется
(135,3 МПа<150 МПа).
Неразрезная балка нагружена во всех пролетах. Построить эпюры Q и M для неразрезной балки.
1. Определяем степень статической неопределимости балки по формуле:
n= Соп -3= 5-3 =2, где Соп – число неизвестных реакций, 3 – число уравнений статики . Для решения данной балки требуется два дополнительных уравнения.
2. Обозначим номера опор с нулевой по порядку (0,1,2,3 )
3. Обозначим номера пролетов с первого по порядку (ι 1, ι 2, ι 3 )
4. Каждый пролет рассматриваем как простую балку и строим для каждой простой балки эпюры Q и M. То, что относится к простой балке , будем обозначать с индексом «0 », то, что относится к неразрезной балке, будем обозначать без этого индекса. Таким образом, — это поперечная сила и изгибающий момент для простой балки.
Изгибом называется деформация, при которой ось стержня и все его волокна, т. е. продольные линии, параллельные оси стержня, искривляются под действием внешних сил. Наиболее простой случай изгиба получается тогда, когда внешние силы будут лежать в плоскости, проходящей через центральную ось стержня, и не дадут проекций на эту ось. Такой случай изгиба называют поперечным изгибом. Различают плоский изгиб и косой.
Плоский изгиб – такой случай, когда изогнутая ось стержня расположена в той же плоскости, в которой действуют внешние силы.
Косой (сложный) изгиб – такой случай изгиба, когда изогнутая ось стержня не лежит в плоскости действия внешних сил.
Работающий на изгиб стержень обычно называют балкой.
При плоском поперечном изгибе балок в сечении с системой координат у0х могут возникать два внутренних усилия – поперечная сила Q у и изгибающий момент М х; в дальнейшем для них вводятся обозначения Q и M. Если в сечении или на участке балки поперечная сила отсутствует (Q=0), а изгибающий момент не равен нулю или М – const, то такой изгиб принято называть чистым .
Поперечная сила в каком-либо сечении балки численно равна алгебраической сумме проекций на ось у всех сил (включая опорные реакции), расположенных по одну сторону (любую) от проведенного сечения.
Изгибающий момент в сечении балки численно равен алгебраической сумме моментов всех сил (включая и опорные реакции), расположенных по одну сторону (любую) от проведенного сечения относительно центра тяжести этого сечения, точнее, относительно оси, проходящей перпендикулярно плоскости чертежа через центр тяжести проведенного сечения.
Сила Q представляет равнодействующую распределенных по сечению внутренних касательных напряжений , а момент М – сумму моментов вокруг центральной оси сечения Х внутренних нормальных напряжений.
Между внутренними усилиями существует дифференциальная зависимость
которая используется при построении и проверке эпюр Q и M.
Поскольку часть волокон балки растягивается, а часть сжимается, причем переход от растяжения к сжатию происходит плавно, без скачков, в средней части балки находится слой, волокна которого только искривляются, но не испытывают ни растяжения, ни сжатия. Такой слой называют нейтральным слоем . Линия, по которой нейтральный слой пересекается с поперечным сечением балки, называется нейтральной линие й или нейтральной осью сечения. Нейтральные линии нанизаны на ось балки.
Линии, проведенные на боковой поверхности балки перпендикулярно оси, остаются плоскими при изгибе. Эти опытные данные позволяют положить в основу выводов формул гипотезу плоских сечений. Согласно этой гипотезе сечения балки плоские и перпендикулярные к ее оси до изгиба, остаются плоскими и оказываются перпендикулярными изогнутой оси балки при ее изгибе. Поперечное сечение балки при изгибе искажается. За счет поперечной деформации размеры поперечного сечения в сжатой зоне балки увеличиваются, а в растянутой сжимаются.
Допущения для вывода формул. Нормальные напряжения
1) Выполняется гипотеза плоских сечений.
2) Продольные волокна друг на друга не давят и, следовательно, под действием нормальных напряжений линейные растяжения или сжатия работают.
3) Деформации волокон не зависят от их положения по ширине сечения. Следовательно, и нормальные напряжения, изменяясь по высоте сечения, остаются по ширине одинаковыми.
4) Балка имеет хотя бы одну плоскость симметрии, и все внешние силы лежат в этой плоскости.
5) Материал балки подчиняется закону Гука, причем модуль упругости при растяжении и сжатии одинаков.
6) Соотношения между размерами балки таковы, что она работает в условиях плоского изгиба без коробления или скручивания.
При чистом изгибе балки на площадках в ее сечении действуют только нормальные напряжения , определяемые по формуле:
где у – координата произвольной точки сечения, отчитываемая от нейтральной линии — главной центральной оси х.
Нормальные напряжения при изгибе по высоте сечения распределяются по линейному закону . На крайних волокнах нормальные напряжения достигают максимального значения, а в центре тяжести сечения равны нулю.
Характер эпюр нормальных напряжений для симметричных сечений относительно нейтральной линии
Характер эпюр нормальных напряжений для сечений, не обладающих симметрией относительно нейтральной линии
Опасными являются точки, наиболее удаленные от нейтральной линии.
Выберем некоторое сечение
Для любой точки сечения,назовем ее точкой К , условие прочности балки по нормальным напряжениям имеет вид:
, где н.о. — это нейтральная ось
это осевой момент сопротивления сечения относительно нейтральной оси. Его размерность см 3 , м 3 . Момент сопротивления характеризует влияние формы и размеров поперечного сечения на величину напряжений.
Условие прочности по нормальным напряжениям:
Нормальное напряжение равно отношению максимального изгибающего момента к осевому моменту сопротивления сечения относительно нейтральной оси.
Если материал неодинаково сопротивляется растяжению и сжатию, то необходимо использовать два условия прочности: для зоны растяжения с допускаемым напряжением на растяжение; для зоны сжатия с допускаемым напряжением на сжатие.
При поперечном изгибе балки на площадках в ее сечении действуют как нормальные , так и касательные напряжения.