Теплопередача строительных материалов. Сравнение теплопроводности строительных материалов по толщине
Какими бы ни были масштабы строительства, первым делом разрабатывается проект. В чертежах отражается не только геометрия строения, но и расчет главных теплотехнических характеристик. Для этого надо знать теплопроводность строительных материалов. Главная цель строительства заключается в сооружении долговечных сооружений, прочных конструкций, в которых комфортно без избыточных затрат на отопление. В связи с этим крайне важно знание коэффициентов теплопроводности материалов.
У кирпича лучшая теплопроводность
Характеристика показателя
Под термином теплопроводность понимается передача тепловой энергии от более нагретых предметов к менее нагретым. Обмен идет, пока не наступит температурного равновесия.
Теплопередача определяется отрезком времени, в течение которого температура в помещениях находится в соответствии с температурой окружающей среды. Чем меньше этот интервал, тем больше проводимость тепла стройматериала.
Для характеристики проводимости тепла используется понятие коэффициента теплопроводности, показывающего, сколько тепла за такое-то время проходит через такую-то площадь поверхности. Чем этот показатель выше, тем больше теплообмен, и постройка остывает гораздо быстрее. Таким образом, при возведении сооружений рекомендуется использовать стройматериалы с минимальной проводимостью тепла.
В этом видео вы узнаете о теплопроводности строительных материалов:
Как определить теплопотери
Главные элементы здания, через которые уходит тепло:
- двери (5-20%);
- пол (10-20%);
- крыша (15-25%);
- стены (15-35%);
- окна (5-15%).
Уровень теплопотери определяется с помощью тепловизора. О самых трудных участках говорит красный цвет, о меньших потерях тепла скажет желтый и зеленый. Зоны, где потери наименьшие, выделяются синим. Значение теплопроводности определяется в лабораторных условиях, и материалу выдается сертификат качества.
Значение проводимости тепла зависит от таких параметров:
- Пористость. Поры говорят о неоднородности структуры. Когда через них проходит тепло, охлаждение будет минимальным.
- Влажность. Высокий уровень влажности провоцирует вытеснение сухого воздуха капельками жидкости из пор, из-за чего значение увеличивается многократно.
- Плотность. Большая плотность способствует более активному взаимодействию частиц. В итоге теплообмен и уравновешивание температур протекает быстрее.
Коэффициент теплопроводности
В доме теплопотери неизбежны, а происходят они, когда за окном температура ниже, чем в помещениях. Интенсивность является переменной величиной и зависит от многих факторов, основные из которых следующие:
- Площадь поверхностей, участвующих в теплообмене.
- Показатель теплопроводности стройматериалов и элементов здания.
- Разница температур.
Для обозначения коэффициента теплопроводности стройматериалов используют греческую букву λ. Единица измерения – Вт/(м×°C). Расчет производится на 1 м² стены метровой толщины. Здесь принимается разница температур в 1°C.
Пример из практики
Условно материалы делятся на теплоизоляционные и конструкционные. Последние имеют наивысшую теплопроводность, из них строят стены, перекрытия, другие ограждения. По таблице материалов, при постройке стен из железобетона для обеспечения малого теплообмена с окружающей средой толщина их должна составлять примерно 6 м. Но тогда строение будет громоздким и дорогостоящим .
В случае неправильного расчета теплопроводности при проектировании жильцы будущего дома будут довольствоваться лишь 10% тепла от энергоносителей. Потому дома из стандартных стройматериалов рекомендуется утеплять дополнительно.
При выполнении правильной гидроизоляции утеплителя большая влажность не влияет на качество теплоизоляции, и сопротивление строения теплообмену станет гораздо более высоким.
Наиболее оптимальный вариант – использовать утеплитель
Наиболее распространенный вариант – сочетание несущей конструкции из высокопрочных материалов с дополнительной теплоизоляцией. Например:
- Каркасный дом. Утеплитель укладывается между стойками. Иногда при небольшом снижении теплообмена требуется дополнительное утепление снаружи главного каркаса.
- Сооружение из стандартных материалов. Когда стены кирпичные или шлакоблочные, утепление производится снаружи.
Стройматериалы для наружных стен
Стены сегодня возводятся из разных материалов, однако популярнейшими остаются: дерево, кирпич и строительные блоки. Главным образом отличаются плотность и проводимость тепла стройматериалов. Сравнительный анализ позволяет найти золотую середину в соотношении между этими параметрами. Чем плотность больше, тем больше несущая способность материала, а значит, всего сооружения. Но тепловое сопротивление становится меньше, то есть повышаются расходы на энергоносители. Обычно при меньшей плотности есть пористость.
Коэффициент теплопроводности и его плотность.
Утеплители для стен
Утеплители используются, когда не хватает тепловой сопротивляемости наружных стен. Обычно для создания комфортного микроклимата в помещениях достаточно толщины 5-10 см.
Значение коэффициента λ приводится в следующей таблице.
Теплопроводность измеряет способность материала пропускать тепло через себя. Она сильно зависит от состава и структуры. Плотные материалы, такие как металлы и камень, являются хорошими проводниками тепла, в то время как вещества с низкой плотностью, такие как газ и пористая изоляция, являются плохими проводниками.
Современные утеплительные материалы имеют уникальные характеристики и применяются для решения задач определенного спектра. Большинство из них предназначены для обработки стен дома, но есть и специфичные, разработанные для обустройства дверных и оконных проемов, мест стыка кровли с несущими опорами, подвальных и чердачных помещений. Таким образом, выполняя сравнение теплоизоляционных материалов, нужно учитывать не только их эксплуатационные свойства, но и сферу применения.
Главные параметры
Дать оценку качеству материала можно исходя из нескольких основополагающих характеристик. Первая из них – коэффициент теплопроводности, который обозначается символом «лямбда» (ι). Этот коэффициент показывает, какой объем теплоты за 1 час проходит через отрезок материала толщиной 1 метр и площадью 1 м² при условии, что разница между температурами среды на обеих поверхностях составляет 10°С.
Показатели коэффициента теплопроводности любых утеплителей зависят от множества факторов – от влажности, паропроницаемости, теплоемкости, пористости и других характеристик материала.
Чувствительность к влаге
Влажность – это объем влаги, которая содержится в теплоизоляции. Вода отлично проводит тепло, и насыщенная ею поверхность будет способствовать выхолаживанию помещения. Следовательно, переувлажненный теплоизоляционный материал потеряет свои качества и не даст желаемого эффекта. И наоборот: чем большими водоотталкивающими свойствами он обладает, тем лучше.
Паропроницаемость – параметр, близкий к влажности. В числовом выражении он представляет собой объем водяного пара, проходящий через 1 м2 утеплителя за 1 час при соблюдении условия, что разность потенциального давления пара составляет 1Па, а температура среды одинакова.
При высокой паропроницаемости материал может увлажняться. В связи с этим при утеплении стен и перекрытий дома рекомендуется выполнить монтаж пароизоляционного покрытия.
Водопоглощение – способность изделия при соприкосновении с жидкостью впитывать ее. Коэффициент водопоглощения очень важен для материалов, которые используются для обустройства наружной теплоизоляции. Повышенная влажность воздуха, атмосферные осадки и роса могут привести к ухудшению характеристик материала.
Плотность и теплоемкость
Пористость – выраженное в процентах количество воздушных пор от общего объема изделия. Различают поры закрытые и открытые, крупные и мелкие. Важно, чтобы в структуре материала они были распределены равномерно: это свидетельствует о качестве продукции. Пористость иногда может достигать 50%, в случае с некоторыми видами ячеистых пластмасс этот показатель составляет 90-98%.
Плотность – это одна из характеристик, влияющих на массу материала. Специальная таблица поможет определить оба этих параметра. Зная плотность, можно рассчитать, насколько увеличится нагрузка на стены дома или его перекрытия.
Теплоемкость – показатель, демонстрирующий, какое количество тепла готова аккумулировать теплоизоляция. Биостойкость – способность материала сопротивляться воздействию биологических факторов, например, патогенной флоры. Огнестойкость – противодействие изоляции огню, при этом данный параметр не стоит путать с пожаробезопасностью. Различают и другие характеристики, к которым относятся прочность, выносливость на изгиб, морозостойкость, износоустойчивость.
Также при выполнении расчетов нужно знать коэффициент U – сопротивление конструкций теплопередаче. Этот показатель не имеет никакого отношения к качествам самих материалов, но его нужно знать, чтобы сделать правильный выбор среди разнообразных утеплителей. Коэффициент U представляет собой отношение разности температур с двух сторон изоляции к объему проходящего через нее теплового потока. Чтобы найти теплосопротивление стен и перекрытий, нужна таблица, где рассчитана теплопроводность строительных материалов.
Произвести необходимые вычисления можно и самостоятельно. Для этого толщину слоя материала делят на коэффициент его теплопроводности. Последний параметр - если речь идет об изоляции - должен быть указан на упаковке материала. В случае с элементами конструкции дома все немного сложнее: хотя их толщину можно измерить самостоятельно, коэффициент теплопроводности бетона, дерева или кирпича придется искать в специализированных пособиях.
При этом часто для изоляции стен, потолка и пола в одном помещении используются материалы разного типа, поскольку для каждой плоскости коэффициент теплопроводности нужно рассчитывать отдельно.
Теплопроводность основных видов утеплителей
Исходя из коэффициента U, можно выбрать, какой из видов теплоизоляции лучше использовать, и какую толщину должен иметь слой материала. Расположенная ниже таблица содержит сведения о плотности, паропроницаемости и теплопроводности популярных утеплителей:
Преимущества и недостатки
При выборе теплоизоляции нужно учитывать не только ее физические свойства, но и такие параметры, как легкость монтажа, потребность в дополнительном обслуживании, долговечность и стоимость.
Сравнение самых современных вариантов
Как показывает практика, проще всего осуществлять монтаж пенополиуретана и пеноизола, которые наносятся на обрабатываемую поверхность в форме пены. Эти материалы пластичны, они с легкостью заполняют полости внутри стен постройки. Недостатком вспениваемых веществ является потребность в использовании специального оборудования для их распыления.
Как показывает приведенная выше таблица, достойную конкуренцию пенополиуретану составляет экструдированный пенополистирол. Этот материал поставляются в виде твердых блоков, но с помощью обычного столярного ножа ему можно придать любую форму. Сравнивая характеристики пенных и твердых полимеров, стоит отметить, что пена не образует швов, и это является ее главным преимуществом по сравнению с блоками.
Сравнение ватных материалов
Минеральная вата по свойствам похожа на пенопласты и пенополистирол, однако при этом «дышит» и не горит. Также она обладает лучшей устойчивостью при воздействии влаги и практически не меняет свои качества в процессе эксплуатации. Если стоит выбор между твердыми полимерами и минеральной ватой, лучше отдать предпочтение последней.
У каменной ваты сравнительные характеристики те же, что и у минеральной, но стоимость выше. Эковата имеет приемлемую цену и легко монтируется, но отличается низкой прочностью на сжатие и со временем проседает. Стекловолокно также проседает и, кроме того, осыпается.
Сыпучие и органические материалы
Для теплоизоляции дома иногда применяются сыпучие материалы – перлит и гранулы из бумаги. Они отталкивают воду и устойчивы к воздействию патогенных факторов. Перлит экологичен, он не горит и не оседает. Тем не менее, сыпучие материалы редко применяются для утепления стен, лучше с их помощью обустраивать полы и перекрытия.
Из органических материалов необходимо выделить лен, древесное волокно и пробковое покрытие. Они безопасны для окружающей среды, но подвержены горению, если не пропитаны специальными веществами. Кроме того, древесное волокно подвержено воздействию биологических факторов.
В целом, если учитывать стоимость, практичность, теплопроводность и долговечность утеплителей, то наилучшие материалы для отделки стен и перекрытий – это пенополиуретан, пеноизол и минеральная вата. Остальные виды изоляции обладают специфическими свойствами, так как разработаны для нестандартных ситуаций, а применять такие утеплители рекомендуется только в том случае, если других вариантов нет.
Методический материал для самостоятельного расчета толщины стен дома с примерами и теоретической частью.
Часть 1. Сопротивление теплопередаче - первичный критерий определения толщины стены
Чтобы определится с толщиной стены, которая необходима для соответствия нормам энергоэффективности, рассчитывают сопротивление теплопередаче проектируемой конструкции, согласно раздела 9 «Методика проектирования тепловой защиты зданий» СП 23-101-2004.
Сопротивление теплопередаче - это свойство материала, которое показывает, насколько способен удерживать тепло данный материал. Это удельная величина, которая показывает насколько медленно теряется тепло в ваттах при прохождении теплового потока через единичный объем при перепаде температур на стенках в 1°С. Чем выше значение данного коэффициента - тем «теплее» материал.
Все стены (несветопрозрачные ограждающие конструкции) считаются на термоспротивление по формуле:
R=δ/λ (м 2 ·°С/Вт), где:
δ - толщина материала, м;
λ - удельная теплопроводность, Вт/(м ·°С) (можно взять из паспортных данных материала либо из таблиц).
Полученную величину R общ сравнивают с табличным значением в СП 23-101-2004.
Чтобы ориентироваться на нормативный документ необходимо выполнить расчет количества тепла, необходимого для обогрева здания. Он выполняется по СП 23-101-2004, получаемая величина «градусо·сутки». Правила рекомендуют следующие соотношения.
Материал стены | Сопротивление теплопередаче (м 2 ·°С/Вт) / область применения (°С·сут) |
||||
конструкционный | теплоизоляционный | Двухслойные с наружной теплоизоляцией | Трехслойные с изоляцией в середине | С невентили- руемой атмосферной прослойкой | С вентилируемой атмосферной прослойкой |
Пенополистирол | |||||
Минеральная вата | |||||
Керамзитобетон (гибкие связи, шпонки) | Пенополистирол | ||||
Минеральная вата | |||||
Блоки из ячеистого бетона с кирпичной облицовкой | Ячеистый бетон | ||||
Примечание. В числителе (перед чертой) - ориентировочные значения приведенного сопротивления теплопередаче наружной стены, в знаменателе (за чертой) - предельные значения градусо-суток отопительного периода, при которых может быть применена данная конструкция стены. |
Полученные результаты необходимо сверить с нормами п. 5. СНиП 23-02-2003 «Тепловая защита зданий».
Также следует учитывать климатические условия зоны, где возводится здание: для разных регионов разные требования из-за разных температурных и влажностных режимов. Т.е. толщина стены из газоблока не должна быть одинаковой для приморского района, средней полосы России и крайнего севера. В первом случае необходимо будет скорректировать теплопроводность с учетом влажности (в большую сторону: повышенная влажность снижает термосопротивление), во втором - можно оставить «как есть», в третьем - обязательно учитывать, что теплопроводность материала вырастет из-за большего перепада температур.
Часть 2. Коэффициент теплопроводности материалов стен
Коэффициент теплопроводности материалов стен - эта величина, которая показывает удельную теплопроводность материала стены, т.е. сколько теряется тепла при прохождении теплового потока через условный единичный объем с разницей температур на его противоположных поверхностях в 1°С. Чем ниже значение коэффициента теплопроводности стен - тем здание получится теплее, чем выше значение - тем больше придется заложить мощности в систему отопления.
По сути, это величина обратная термическому сопротивлению, рассмотренному в части 1 настоящей статьи. Но это касается только удельных величин для идеальных условий. На реальный коэффициент теплопроводности для конкретного материала влияет ряд условий: перепад температур на стенках материала, внутренняя неоднородная структура, уровень влажности (который увеличивает уровень плотности материала, и, соответственно, повышает его теплопроводность) и многие другие факторы. Как правило, табличную теплопроводность необходимо уменьшать минимум на 24% для получения оптимальной конструкции для умеренных климатических зон.
Часть 3. Минимально допустимое значение сопротивления стен для различных климатических зон.
Минимально допустимое термосопротивление рассчитывается для анализа теплотехнических свойств проектируемой стены для различных климатических зон. Это нормируемая (базовая) величина, которая показывает, каким должно быть термосопротивление стены в зависимости от региона. Сначала вы выбираете материал для конструкции, просчитываете термосопротивление своей стены (часть 1), а потом сравниваете с табличными данными, содержащимися в СНиП 23-02-2003. В случае, если полученное значение окажется меньше установленного правилами, то необходимо либо увеличить толщину стены, либо утеплить стену теплоизоляционным слоем (например, минеральной ватой).
Согласно п. 9.1.2 СП 23-101-2004, минимально допустимое сопротивление теплопередаче R о (м 2 ·°С/Вт) ограждающей конструкции рассчитывается как
R о = R 1 + R 2 +R 3 , где:
R 1 =1/α вн, где α вн - коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м 2 × °С), принимаемый по таблице 7 СНиП 23-02-2003;
R 2 = 1/α внеш, где α внеш - коэффициент теплоотдачи наружной поверхности ограждающей конструкции для условий холодного периода, Вт/(м 2 × °С), принимаемый по таблице 8 СП 23-101-2004;
R 3 - общее термосопротивление, расчет которого описан в части 1 настоящей статьи.
При наличии в ограждающей конструкции прослойки, вентилируемой наружным воздухом, слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью, в этом расчете не учитываются. А на поверхности конструкции, обращенной в сторону вентилируемой воздухом снаружи прослойки, следует принимать коэффициент теплоотдачи α внеш равным 10,8 Вт/(м 2 ·°С).
Таблица 2. Нормируемые значения термосопротивления для стен по СНиП 23-02-2003.
Уточненные значения градусо-суток отопительного периода, указаны в таблице 4.1 справочного пособия к СНиП 23-01-99* Москва, 2006.
Часть 4. Расчет минимально допустимой толщины стены на примере газобетона для Московской области.
Рассчитывая толщину стеновой конструкции, берем те же данные, что указаны в Части 1 настоящей статьи, но перестраиваем основную формулу: δ = λ·R, где δ - толщина стены, λ - теплопроводность материала, а R - норма теплосопротивления по СНиП.
Пример расчета минимальной толщины стены из газобетона с теплопроводностью 0,12 Вт/м°С в Московской области со средней температурой внутри дома в отопительный период +22°С.
- Берем нормируемое теплосопротивление для стен в Московском регионе для температуры +22°C: R req = 0,00035·5400 + 1,4 = 3,29 м 2 °C/Вт
- Коэффициент теплопроводности λ для газобетона марки D400 (габариты 625х400х250 мм) при влажности 5% = 0,147 Вт/м∙°С.
- Минимальная толщина стены из газобетонного камня D400: R·λ = 3,29·0,147 Вт/м∙°С=0,48 м.
Вывод: для Москвы и области для возведения стен с заданным параметром теплосопротивления нужен газобетонный блок с габаритом по ширине не менее 500 мм, либо блок с шириной 400 мм и последующим утеплением (минвата+оштукатуривание, например), для обеспечения характеристик и требований СНиП в части энергоэффективности стеновых конструкций.
Таблица 3. Минимальная толщина стен, возводимых из различных материалов, соответствующих нормам теплового сопротивления согласно СНиП.
Материал | Толщина стены, м | проводность, | |
Керамзитоблоки | Для строительства несущих стен используют марку не менее D400. |
||
Шлакоблоки | |||
Газосиликатные блоки d500 | Использую марку от D400 и выше для домостроения |
||
Пеноблок | строительство только каркасным способом |
||
Ячеистый бетон | Теплопроводность ячеистого бетона прямо пропорциональна его плотности: чем «теплее» камень, тем он менее прочен. |
||
Минимальный размер стен для каркасных сооружений |
|||
Кирпич керамический полнотелый | |||
Песко-бетонные блоки | При 2400 кг/м³ в условиях нормальной температуры и влажности воздуха. |
Часть 5. Принцип определения значения сопротивления теплопередачи в многослойной стене.
Если вы планируете построить стену из нескольких видов материала (например, строительный камень+минеральный утеплитель+штукатурка), то R рассчитывается для каждого вида материала отдельно (по этой же формуле), а потом суммируется:
R общ = R 1 + R 2 +…+ R n + R a.l где:
R 1 -R n - термосопротивления различных слоев
R a.l - сопротивление замкнутой воздушной прослойки, если она присутствует в конструкции (табличные значения берутся в СП 23-101-2004, п. 9, табл. 7)
Пример расчета толщины минераловатного утеплителя для многослойной стены (шлакоблок - 400 мм, минеральная вата - ? мм, облицовочный кирпич - 120 мм) при значении сопротивления теплопередаче 3,4 м 2 *Град С/Вт (г. Оренбург).
R=Rшлакоблок+Rкирпич+Rвата=3,4
Rшлакоблок = δ/λ = 0,4/0,45 = 0,89 м 2 ×°С/Вт
Rкирпич = δ/λ = 0,12/0,6 = 0,2 м 2 ×°С/Вт
Rшлакоблок+Rкирпич=0,89+0,2 = 1,09 м 2 ×°С/Вт (<3,4).
Rвата=R-(Rшлакоблок+Rкирпич) =3.4-1,09=2,31 м 2 ×°С/Вт
δвата=Rвата·λ=2,31*0,045=0,1 м=100 мм (принимаем λ=0,045 Вт/(м×°С) - среднее значение теплопроводности для минеральной ваты различных видов).
Вывод: для соблюдения требований по сопротивлению теплопередачи можно использовать керамзитобетонные блоки в качестве основной конструкции с облицовкой ее керамическим кирпичом и прослойкой из минеральной ваты теплопроводностью не менее 0,45 и толщиной от 100 мм.
Вопросы и ответы по теме
По материалу пока еще не задан ни один вопрос, у вас есть возможность сделать это первымОдним из важнейших показателей строительных материалов, особенно в условиях российского климата, является их теплопроводность, которая в общем виде определяется как способность тела к теплообмену (то есть распределению тепла от более горячей среды к более холодной).
В данном случае более холодная среда – это улица, а горячая – внутреннее пространство (летом зачастую наоборот). Сравнительная характеристика приведена в таблице:
Коэффициент рассчитывается как количество тепла, которое пройдет через материал толщиной 1 метр за 1 час при разнице температур внутри и снаружи на 1 градус Цельсия. Соответственно, единицей измерения строительных материалов является Вт/ (м*оС) – 1 Ватт, разделенный на произведение метра и градуса.
Материал | Теплопроводность,Вт/(м·град) | Теплоемкость,Дж/(кг·град) | Плотность,кг/м3 |
Асбестоцемент | 27759 | 1510 | 1500-1900 |
Асбестоцементный лист | 0.41 | 1510 | 1601 |
Асбозурит | 0.14-0.19 | — | 400-652 |
Асбослюда | 0.13-0.15 | — | 450-625 |
Асботекстолит Г (ГОСТ 5-78) | — | 1670 | 1500-1710 |
Асфальт | 0.71 | 1700-2100 | 1100-2111 |
Асфальтобетон (ГОСТ 9128-84) | 42856 | 1680 | 2110 |
Асфальт в полах | 0.8 | — | — |
Ацеталь (полиацеталь,полиформальдегид) POM | 0.221 | — | 1400 |
Береза | 0.151 | 1250 | 510-770 |
Бетон легкий с природной пемзой | 0.15-0.45 | — | 500-1200 |
Бетон на зольном гравии | 0.24-0.47 | 840 | 1000-1400 |
Бетон на каменном щебне | 0.9-1.5 | — | 2200-2500 |
Бетон на котельном шлаке | 0.57 | 880 | 1400 |
Бетон на песке | 0.71 | 710 | 1800-2500 |
Бетон на топливных шлаках | 0.3-0.7 | 840 | 1000-1800 |
Бетон силикатный плотный | 0.81 | 880 | 1800 |
Битумоперлит | 0.09-0.13 | 1130 | 300-410 |
Блок газобетонный | 0.15-0.3 | — | 400-800 |
Блок керамический поризованный | 0.2 | — | — |
Вата минеральная легкая | 0.045 | 920 | 50 |
Вата минеральная тяжелая | 0.055 | 920 | 100-150 |
пенобетон, газо- и пеносиликат | 0.08-0.21 | 840 | 300-1000 |
Газо- и пенозолобетон | 0.17-0.29 | 840 | 800-1200 |
Гетинакс | 0.230 | 1400 | 1350 |
Гипс формованный сухой | 0.430 | 1050 | 1100-1800 |
Гипсокартон | 0.12-0.2 | 950 | 500-900 |
Гипсоперлитовый раствор | 0.140 | — | — |
Глина | 0.7-0.9 | 750 | 1600-2900 |
Глина огнеупорная | 42826 | 800 | 1800 |
Гравий (наполнитель) | 0.4-0.930 | 850 | 1850 |
Гравий керамзитовый (ГОСТ 9759-83) — засыпка | 0.1-0.18 | 840 | 200-800 |
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка | 0.11-0.160 | 840 | 400-800 |
Гранит (облицовка) | 42858 | 880 | 2600-3000 |
Грунт 10% воды | 27396 | — | — |
Грунт песчаный | 42370 | 900 | — |
Грунт сухой | 0.410 | 850 | 1500 |
Гудрон | 0.30 | — | 950-1030 |
Железо | 70-80 | 450 | 7870 |
Железобетон | 42917 | 840 | 2500 |
Железобетон набивной | 20090 | 840 | 2400 |
Зола древесная | 0.150 | 750 | 780 |
Золото | 318 | 129 | 19320 |
Каменноугольная пыль | 0.1210 | — | 730 |
Камень керамический поризованный | 0.14-0.1850 | — | 810-840 |
Картон гофрированный | 0.06-0.07 | 1150 | 700 |
Картон облицовочный | 0.180 | 2300 | 1000 |
Картон парафинированный | 0.0750 | — | — |
Картон плотный | 0.1-0.230 | 1200 | 600-900 |
Картон пробковый | 0.0420 | — | 145 |
Картон строительный многослойный | 0.130 | 2390 | 650 |
Картон термоизоляционный | 0.04-0.06 | — | 500 |
Каучук натуральный | 0.180 | 1400 | 910 |
Каучук твердый | 0.160 | — | — |
Каучук фторированный | 0.055-0.06 | — | 180 |
Кедр красный | 0.095 | — | 500-570 |
Керамзит | 0.16-0.2 | 750 | 800-1000 |
Керамзитобетон легкий | 0.18-0.46 | — | 500-1200 |
Кирпич доменный (огнеупорный) | 0.5-0.8 | — | 1000-2000 |
Кирпич диатомовый | 0.8 | — | 500 |
Кирпич изоляционный | 0.14 | — | — |
Кирпич карборундовый | — | 700 | 1000-1300 |
Кирпич красный плотный | 0.67 | 840-880 | 1700-2100 |
Кирпич красный пористый | 0.440 | — | 1500 |
Кирпич клинкерный | 0.8-1.60 | — | 1800-2000 |
Кирпич кремнеземный | 0.150 | — | — |
Кирпич облицовочный | 0.930 | 880 | 1800 |
Кирпич пустотелый | 0.440 | — | — |
Кирпич силикатный | 0.5-1.3 | 750-840 | 1000-2200 |
Кирпич силикатный с тех. пустотами | 0.70 | — | — |
Кирпич силикатный щелевой | 0.40 | — | — |
Кирпич сплошной | 0.670 | — | — |
Кирпич строительный | 0.23-0.30 | 800 | 800-1500 |
Кирпич трепельный | 0.270 | 710 | 700-1300 |
Кирпич шлаковый | 0.580 | — | 1100-1400 |
Листы пробковые тяжелые | 0.05 | — | 260 |
Магнезия в форме сегментов для изоляции труб | 0.073-0.084 | — | 220-300 |
Мастика асфальтовая | 0.70 | — | 2000 |
Маты, холсты базальтовые | 0.03-0.04 | — | 25-80 |
Маты минераловатные прошивные | 0.048-0.056 | 840 | 50-125 |
Нейлон | 0.17-0.24 | 1600 | 1300 |
Опилки древесные | 0.07-0.093 | — | 200-400 |
Пакля | 0.05 | 2300 | 150 |
Панели стеновые из гипса | 0.29-0.41 | — | 600-900 |
Парафин | 0.270 | — | 870-920 |
Паркет дубовый | 0.420 | 1100 | 1800 |
Паркет штучный | 0.230 | 880 | 1150 |
Паркет щитовой | 0.170 | 880 | 700 |
Пемза | 0.11-0.16 | — | 400-700 |
Пемзобетон | 0.19-0.52 | 840 | 800-1600 |
Пенобетон | 0.12-0.350 | 840 | 300-1250 |
Пенопласт резопен ФРП-1 | 0.041-0.043 | — | 65-110 |
Пенополиуретановые панели | 0.025 | — | — |
Пеносиликальцит | 0.122-0.320 | — | 400-1200 |
Пеностекло легкое | 0.045-0.07 | — | 100..200 |
Пеностекло или газо-стекло | 0.07-0.11 | 840 | 200-400 |
Пенофол | 0.037-0.039 | — | 44-74 |
Пергамент | 0.071 | — | — |
Песок 0% влажности | 0.330 | 800 | 1500 |
Песок 10% влажности | 0.970 | — | — |
Песок 20% влажности | 12055 | — | — |
Плита пробковая | 0.043-0.055 | 1850 | 80-500 |
Плитка облицовочная, кафельная | 42856 | — | 2000 |
Полиуретан | 0.320 | — | 1200 |
Полиэтилен высокой плотности | 0.35-0.48 | 1900-2300 | 955 |
Полиэтилен низкой плотности | 0.25-0.34 | 1700 | 920 |
Поролон | 0.04 | — | 34 |
Портландцемент (раствор) | 0.470 | — | — |
Прессшпан | 0.26-0.22 | — | — |
Пробка гранулированная | 0.038 | 1800 | 45 |
Пробка минеральная на битумной основе | 0.073-0.096 | — | 270-350 |
Пробка техническая | 0.037 | 1800 | 50 |
Пробковое покрытие для полов | 0.078 | — | 540 |
Ракушечник | 0.27-0.63 | 835 | 1000-1800 |
Раствор гипсовый затирочный | 0.50 | 900 | 1200 |
Резина пористая | 0.05-0.17 | 2050 | 160-580 |
Рубероид (ГОСТ 10923-82) | 0.17 | 1680 | 600 |
Стекловата | 0.03 | 800 | 155-200 |
Стекловолокно | 0.040 | 840 | 1700-2000 |
Туфобетон | 0.29-0.64 | 840 | 1200-1800 |
Уголь каменный обыкновенный | 0.24-0.27 | — | 1200-1350 |
Шлакопемзобетон (термозитобетон) | 0.23-0.52 | 840 | 1000-1800 |
Штукатурка гипсовая | 0.30 | 840 | 800 |
Щебень из доменного шлака | 0.12-0.18 | 840 | 400-800 |
Эковата | 0.032-0.041 | 2300 | 35-60 |
Сравнение теплопроводности строительных материалов, а также их плотности и паропроницаемости представлено в таблице.
Жирным шрифтом выделены наиболее эффективные материалы, применяющиеся в строительстве домов.
Ниже представлена наглядная схема, из которой легко увидеть, какую толщину должна иметь стена из разных материалов, чтобы она удерживала одинаковое количество тепла.
Очевидно, что по этому показателю преимущество за искусственными материалами (например, пенополистиролом).
Примерно такую же картину можно увидеть, если составить диаграмму строительных материалов, которые наиболее часто применяются в работе.
При этом большое значение имеют условия окружающей среды. Ниже приведена таблица теплопроводности строительных материалов, которые эксплуатируются:
- в обычных условиях (А);
- в условиях повышенной влажности (Б);
- в условиях засушливого климата.
Данные взяты на основе соответствующих строительных норм и правил (СНиП II-3-79), а также из открытых интернет-источников (веб-страницы производителей соответствующих материалов). Если данные по конкретным условиям эксплуатации отсутствуют, то поле в таблице не заполнено.
Чем больше показатель, тем больше тепла он пропускает при прочих равных условиях. Так, у некоторых видов пенополистирола этот показатель равен 0,031, а у пенополиуретана – 0,041. С другой стороны, у бетона коэффициент на порядок выше – 1,51, следовательно, он пропускает тепло значительно лучше, чем искусственные материалы.
Сравнительные потери тепла через разные поверхности дома можно увидеть на схеме (100% — общие потери).
Очевидно, что большая часть уходит именно из стен, поэтому отделка этой части помещения – наиболее важная задача, особенно в условиях северного климата.
Видео для справки
Применение материалов с небольшой теплопроводностью в утеплении домов
В основном сегодня используются искусственные материалы – пенопласт, минеральная вата, пенополиуретан, пенополистирол и другие. Они очень эффективны, доступны по цене и достаточно легко монтируются, не требуя особых навыков работы.
- при возведении стен (требуется меньшая их толщина, поскольку основную нагрузку по сбережению тепла берут на себя именно теплоизоляционные материалы);
- при обслуживании дома (тратится меньше ресурсов на отопление).
Пенопласт
Это один из лидеров в своей категории, который широко используется в утеплении стен как снаружи, так и внутри. Коэффициент составляет примерно 0,052-0,055 Вт/(оС*м).
Как выбрать качественный утеплитель
При выборе конкретного образца важно обращать внимание на маркировке – именно она содержит все основные сведения, влияющие на свойства.
Например, ПСБ-С-15 означает следующее:
Минеральная вата
Еще один довольно распространенный утеплитель, который применяется как во внутренней, так и в наружной отделке помещений, – это минеральная вата.
Материал достаточно долговечный, недорогой и несложен в монтаже. Вместе с тем, в отличие от пенопласта, она хорошо впитывает влагу, поэтому при ее использовании необходимо применять и гидроизоляционные материалы, что удорожает монтажные работы.
Таблица теплопроводности строительных материалов необходима при проектировании защиты здания от теплопотерь согласно нормативам СНиП от 2003 года под номером 23-02. Этими мероприятиями обеспечивается снижение эксплуатационного бюджета, поддержание круглогодичного комфортного микроклимата внутри помещений. Для удобства пользователей все данные сведены в таблицы, даны параметры для нормальной эксплуатации, условий повышенной влажности, так как, некоторые материалы при увеличении этого параметра резко снижают свойства.
Теплопроводность является одним из способов потерь тепла жилыми помещениями. Эта характеристика выражается количеством тепла, способным проникнуть сквозь единицу площади материала (1 м 2) за секунду при стандартной толщине слоя (1 м). Физики объясняют выравнивание температур различных тел, объектов путем теплопроводности природным стремлением к термодинамическому равновесию всех материальных веществ. Таким образом, каждый индивидуальный застройщик, отапливая помещение в зимний период, получает потери тепловой энергии, уходящей из жилища сквозь наружные стены, полы, окна, кровлю. Чтобы сократить расход энергоносителя для обогрева помещений, сохранив внутри них комфортный для эксплуатации микроклимат, необходимо рассчитать толщину всех ограждающих конструкций на этапе проектирования. Это позволит сократить бюджет строительства. Таблица теплопроводности строительных материалов позволяет использовать точные коэффициенты для стеновых конструкционных материалов. Нормативы СНиП регламентируют сопротивление фасадов коттеджа передаче тепла холодному воздуху улицы в пределах 3,2 единиц. Перемножив эти значения, можно получить необходимую толщину стены, чтобы определиться с количеством материала. Например, при выборе ячеистого бетона с коэффициентом 0,12 единиц достаточно кладки в один блок длиной 0,4 м. используя более дешевые блоки из этого же материала с коэффициентом 0,16 единиц, потребуется сделать стену толще – 0,52 м. Коэффициент теплопроводности сосны, ели составляет 0,18 единиц. Поэтому, для соблюдения условия сопротивления теплопередаче 3,2, потребуется 57 см брус, которого не существует в природе. При выборе кирпичной кладки с коэффициентом 0,81 единица толщина наружных стен грозит увеличением до 2,6 м, железобетонных конструкций – до 6,5 м. На практике стены изготавливают многослойными, закладывая внутрь слой утеплителя или обшивая теплоизолятором наружную поверхность. У этих материалов коэффициент теплопроводности гораздо ниже, что позволяет уменьшить толщину многократно. Конструкционный материал обеспечивает прочность здания, теплоизолятор снижает теплопотери до приемлемого уровня. Современные облицовочные материалы, используемые на фасадах, внутренних стенах, так же обладают сопротивлением теплопотерям. Поэтому, в расчетах учитываются все слои будущих стен. Вышеуказанные расчеты будут неточными если не учесть наличие в каждой стене коттеджа светопрозрачных конструкций. Таблица теплопроводности строительных материалов в нормативах СНиП обеспечивает легкий доступ к коэффициентам теплопроводности данных материалов. При выборе типового или индивидуального проекта застройщик получает комплект документации, необходимый для возведения стен. Силовые конструкции в обязательном порядке просчитаны на прочность с учетом ветровых, снеговых, эксплуатационных, конструкционных нагрузок. Толщина стен учитывает характеристики материала каждого слоя, поэтому, теплопотери гарантированно будут ниже допустимых норм СНиП. В этом случае заказчик может предъявить претензии организации, занимавшейся проектированием, при отсутствии необходимого эффекта в процессе эксплуатации жилища. Однако, при строительстве дачи, садового домика многие владельцы предпочитают экономить на приобретении проектной документации. В этом случае расчеты толщины стен можно произвести самостоятельно. Специалисты не рекомендуют пользоваться сервисами на сайтах компаний, реализующих конструкционные материалы, утеплители. Многие из них завышают в калькуляторах значения коэффициентов теплопроводности стандартных материалов для представления собственной продукции в выгодном свете. Подобнее ошибки в расчетах чреваты для застройщика снижением комфортности внутренних помещений в холодный период. Самостоятельный расчет не представляет сложностей, используется ограниченное количество формул, нормативных значений: Например, чтобы привести толщину кирпичной стены в соответствие с нормативным теплосопротивлением, потребуется умножить коэффициент для этого материала, взятый из таблицы на нормативное теплосопротивление: 0,76 х 3,5 = 2,66 м Подобная крепость излишне затратна для любого застройщика, поэтому, следует снизить толщину кладки до приемлемых 38 см, добавив утеплитель: Теплосопротивление кирпичной кладки в этом случае составит 0,38/0,76 = 0,5 единиц. Вычитая из нормативного параметра полученный результат, получаем необходимое теплосопротивление слоя утеплителя: 3,5 – 0,5 = 3 единицы При выборе базальтовой ваты с коэффициентом 0,039 единиц, получаем слой толщиной: 3 х 0,039 = 11,7 смПример расчета толщины стены по теплопроводности