Закон распределения случайной величины x задан таблицей. Дискретная случайная величина и функция её распределения

Дискретными случайными величинами называются случайные величины, принимающие только отдаленные друг от друга значения, которые можно заранее перечислить.
Закон распределения
Законом распределения случайной величины называется соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями.
Рядом распределения дискретной случайной величины называют перечень ее возможных значений и соответствующих им вероятностей.
Функцией распределения дискретной случайной величины называют функцию:
,
определяющую для каждого значения аргумента x вероятность того, что случайная величина X примет значение, меньшее этого x.

Математическое ожидание дискретной случайной величины
,
где - значение дискретной случайной величины; - вероятности принятия случайной величиной X значений .
Если случайная величина принимает счетное множество возможных значений, то:
.
Математическое ожидание числа наступлений события в n независимых испытаниях:
,

Дисперсия и среднеквадратическое отклонение дискретной случайной величины
Дисперсия дискретной случайной величины:
или .
Дисперсия числа наступлений события в n независимых испытаниях
,
где p - вероятность наступления события.
Среднеквадратическое отклонение дискретной случайной величины:
.

Пример 1
Составьте закон распределения вероятностей дискретной случайной величины (д.с.в.) X – числа k выпадений хотя бы одной «шестерки» в n = 8 бросаниях пары игральных кубиков. Постройте многоугольник распределения. Найдите числовые характеристики распределения (моду распределения, математическое ожидание M(X), дисперсию D(X), среднее квадратическое отклонение s(X)). Решение: Введем обозначение: событие A – «при бросании пары игральных кубиков шестерка появилась хотя бы один раз». Для нахождения вероятности P(A) = p события A удобнее вначале найти вероятность P(Ā) = q противоположного события Ā – «при бросании пары игральных кубиков шестерка не появилась ни разу».
Поскольку вероятность непоявления «шестерки» при бросании одного кубика равна 5/6, то по теореме умножения вероятностей
P(Ā) = q = = .
Соответственно,
P(A) = p = 1 – P(Ā) = .
Испытания в задаче проходят по схеме Бернулли, поэтому д.с.в. величина X – число k выпадений хотя одной шестерки при бросании двух кубиков подчиняется биномиальному закону распределения вероятностей:

где = – число сочетаний из n по k .

Проведенные для данной задачи расчеты удобно оформить в виде таблицы:
Распределение вероятностей д.с.в. X º k (n = 8; p = ; q = )

k

Pn (k )

Полигон (многоугольник) распределения вероятностей дискретной случайной величины X представлен на рис.:

Рис. Полигон распределения вероятностей д.с.в. X =k .
Вертикальной линией показано математическое ожидание распределения M (X ).

Найдем числовые характеристики распределения вероятностей д.с.в. X . Мода распределения равна 2 (здесь P 8(2) = 0,2932 максимально). Математическое ожидание по определению равно:
M (X ) = = 2,4444,
где xk = k – значение, принимаемое д.с.в. X . Дисперсию D (X ) распределения найдем по формуле:
D (X ) = = 4,8097.
Среднее квадратическое отклонение (СКО):
s(X ) = = 2,1931.

Пример2
Дискретная случайная величинаX задана законом распределения

Найти функцию распределения F(x) и построить ее график.

Решение. Если , то (третье свойство).
Если , то . Действительно, X может принять значение 1 с вероятностью 0,3.
Если , то . Действительно, если удовлетворяет неравенству
, то равно вероятности события , которое может быть осуществлено, когда X примет значение 1 (вероятность этого события равна 0,3) или значение 4 (вероятность этого события равна 0,1). Поскольку эти два события несовместны, то по теореме сложения вероятность события равна сумме вероятностей 0,3 + 0,1=0,4. Если , то . Действительно, событие достоверно, следовательно, его вероятность равна единице. Итак, функция распределения аналитически может быть записана так:

График этой функции:
Найдем соответствующие этим значениям вероятности. По условию, вероятности выхода из строя приборов равны: тогда вероятности того, что приборы будут рабочими в течение гарантийного срока равны:




Закон распределения имеет вид:

В приложениях теории вероятностей основное значение имеет количественная характеристика эксперимента. Величина, которая может быть количественно определена и которая в результате эксперимента может принимать в зависимости от случая различные значения, называется случайной величиной.

Примеры случайных величин:

1. Число выпадений четного числа очков при десяти бросаниях игральной кости.

2. Число попаданий в мишень стрелком, который производит серию выстрелов.

3. Число осколков разорвавшегося снаряда.

В каждом из приведенных примеров случайная величина может принимать лишь изолированные значения, то есть значения, которые можно пронумеровать с помощью натурального ряда чисел.

Такая случайная величина, возможные значения которой есть отдельные изолированные числа, которые эта величина принимает с определенными вероятностями, называется дискретной.

Число возможных значений дискретной случайной величины может быть конечным или бесконечным (счетным).

Законом распределения дискретной случайной величины называют перечень её возможных значений и соответствующих им вероятностей. Закон распределения дискретной случайной величины можно задать в виде таблицы (ряд распределения вероятностей), аналитически и графически (многоугольник распределения вероятностей).

При осуществлении того или иного эксперимента возникает необходимость оценивать изучаемую величину «в среднем». Роль среднего значения случайной величины играет числовая характеристика, называемая математическим ожиданием, которая определяется формулой

где x 1 , x 2 ,.. , x n – значения случайной величины X , а p 1 , p 2 , ... , p n – вероятности этих значений (заметим, что p 1 + p 2 +…+ p n = 1).

Пример. Производится стрельба по мишени (рис. 11).

Попадание в I дает три очка, в II – два очка, в III – одно очко. Число очков, выбиваемых при одном выстреле одним стрелком, имеет закон распределения вида

Для сравнения мастерства стрелков достаточно сравнить средние значения выбиваемых очков, т.е. математические ожидания M (X ) и M (Y ):

M (X ) = 1 0,4 + 2  0,2 + 3  0,4 = 2,0,

M (Y ) = 1 0,2 + 2  0,5 + 3  0,3 = 2,1.

Второй стрелок дает в среднем несколько большее число очков, т.е. при многократной стрельбе он будет давать лучший результат.

Отметим свойства математического ожидания:

1. Математическое ожидание постоянной величины равно самой постоянной:

M (C ) = C .

2. Математическое ожидание суммы случайных величин равно сумме математических ожиданий слагаемых:

M = (X 1 + X 2 +…+ X n )= M (X 1)+ M (X 2)+…+ M (X n ).

3. Математическое ожидание произведения взаимно независимых случайных величин равно произведению математических ожиданий cомножителей

M (X 1 X 2 X n ) = M (X 1)M (X 2)M (X n ).

4. Математическое отрицание биноминального распределения равно произведению числа испытаний на вероятность появления события в одном испытании (задача 4.6).

M (X ) = пр .

Для оценки того, каким образом случайная величина «в среднем» уклоняется от своего математического ожидания, т.е. для того чтобы охарактеризовать разброс значений случайной величины в теории вероятностей служит понятие дисперсии.

Дисперсией случайной величины X называют математическое ожидание квадрата отклонения:

D (X ) = M [(X - M (X )) 2 ].

Дисперсия является числовой характеристикой рассеивания случайной величины. Из определения видно, что чем меньше дисперсия случайной величины, тем кучнее располагаются её возможные значения около математического ожидания, то есть тем лучше значения случайной величины характеризуются её математическим ожиданием.

Из определения следует, что дисперсия может быть вычислена по формуле

.

Дисперсию удобно вычислять по другой формуле:

D (X ) = M (X 2) - (M (X )) 2 .

Дисперсия обладает следующими свойствами:

1. Дисперсия постоянной равна нулю:

D (C ) = 0.

2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

D (CX ) = C 2 D (X ).

3. Дисперсия суммы независимых случайных величин равна сумме дисперсии слагаемых:

D (X 1 + X 2 + X 3 +…+ X n )= D (X 1)+ D (X 2)+…+ D (X n )

4. Дисперсия биномиального распределения равна произведению числа испытаний на вероятность появления и непоявления события в одном испытании:

D (X ) = npq .

В теории вероятностей часто используется числовая характеристика, равная корню квадратному из дисперсии случайной величины. Эта числовая характеристика называется средним квадратным отклонением и обозначается символом

.

Она характеризует примерный размер уклонения случайной величины от её среднего значения и имеет одинаковую со случайной величиной размерность.

4.1. Стрелок проводит по мишени три выстрела. Вероятность попадания в мишень при каждом выстреле равна 0,3.

Построить ряд распределения числа попаданий.

Решение . Число попаданий является дискретной случайной величиной X . Каждому значению x n случайной величины X отвечает определенная вероятность P n .

Закон распределения дискретной случайной величины в данном случае можно задать рядом распределения .

В данной задаче X принимает значения 0, 1, 2, 3. По формуле Бернулли

,

найдем вероятности возможных значений случайной величины:

Р 3 (0) = (0,7) 3 = 0,343,

Р 3 (1) =0,3(0,7) 2 = 0,441,

Р 3 (2) =(0,3) 2 0,7 = 0,189,

Р 3 (3) = (0,3) 3 = 0,027.

Расположив значения случайной величины X в возрастающем порядке, получим ряд распределения:

X n

Заметим, что сумма

означает вероятность того, что случайная величина X примет хотя бы одно значение из числа возможных, а это событие достоверное, поэтому

.

4.2 .В урне имеются четыре шара с номерами от 1 до 4. Вынули два шара. Случайная величинаX – сумма номеров шаров. Построить ряд распределения случайной величиныX .

Решение. Значениями случайной величиныX являются 3, 4, 5, 6, 7. Найдем соответствующие вероятности. Значение 3 случайной величиныX может принимать в единственном случае, когда один из выбранных шаров имеет номер 1, а другой 2. Число всевозможных исходов испытания равно числу сочетаний из четырех (число возможных пар шаров) по два.

По классической формуле вероятности получим

Аналогично,

Р (Х = 4) =Р (Х = 6) =Р (Х = 7) = 1/6.

Сумма 5 может появиться в двух случаях: 1 + 4 и 2 + 3, поэтому

.

Х имеет вид:

Найти функцию распределения F (x ) случайной величиныX и построить ее график. Вычислить дляX ее математическое ожидание и дисперсию.

Решение . Закон распределения случайной величины может быть задан функцией распределения

F (x ) = P (X x ).

Функция распределения F (x ) – неубывающая, непрерывная слева функция, определенная на всей числовой оси, при этом

F (- )= 0,F (+ )= 1.

Для дискретной случайной величины эта функция выражается формулой

.

Поэтому в данном случае

График функции распределения F (x ) представляет собой ступенчатую линию (рис. 12)

F (x )

Математическое ожидание М (Х ) является взвешенной средней арифметической значенийх 1 , х 2 ,……х n случайной величиныХ при весахρ 1, ρ 2, …… , ρ n и называется средним значением случайной величиныХ . По формуле

М (Х ) = х 1 ρ 1 + х 2 ρ 2 + ……+ х n ρ n

М (Х ) = 3·0,14+5·0,2+7·0,49+11·0,17 = 6,72.

Дисперсия характеризует степень рассеяния значений случайной величины от своего среднего значения и обозначаетсяD (Х ):

D (Х )[(Х-М (Х )) 2 ] = М (Х 2) –[М (Х )] 2 .

Для дискретной случайной величины дисперсия имеет вид

или она может быть вычислена по формуле

Подставляя числовые данные задачи в формулу, получим:

М (Х 2) = 3 2 ∙ 0,14+5 2 ∙ 0,2+7 2 ∙ 0,49+11 2 ∙ 0,17 = 50,84

D (Х ) = 50,84-6,72 2 = 5,6816.

4.4. Две игральные кости одновременно бросают два раза. Написать биномиальный закон распределения дискретной случайной величиныХ - числа выпадений четного суммарного числа очков на двух игральных костях.

Решение . Введем в рассмотрение случайное событие

А = {на двух костях при одном бросании выпало в сумме четное число очков}.

Используя классическое определение вероятности найдем

Р (А )= ,

где n - число всевозможных исходов испытания находим по правилу

умножения:

n = 6∙6 =36,

m - число благоприятствующих событиюА исходов - равно

m = 3∙6=18.

Таким образом, вероятность успеха в одном испытании равна

ρ = Р (А )= 1/2.

Задача решается с применением схемы испытаний Бернулли. Одним испытанием здесь будет бросание двух игральных костей один раз. Число таких испытаний n = 2. Случайная величинаХ принимает значения 0, 1, 2 с вероятностями

Р 2 (0) =,Р 2 (1) =,Р 2 (2) =

Искомое биноминальное распределение случайной величины Х можно представить в виде ряда распределения:

х n

ρ n

4.5 . В партии из шести деталей имеется четыре стандартных. Наудачу отобраны три детали. Составить распределение вероятностей дискретной случайной величиныХ – числа стандартных деталей среди отобранных и найти ее математическое ожидание.

Решение. Значениями случайной величиныХ являются числа 0,1,2,3. Ясно, чтоР (Х =0)=0, поскольку нестандартных деталей всего две.

Р (Х =1) =
=1/5,

Р (Х= 2) =
= 3/5,

Р (Х =3) =
= 1/5.

Закон распределения случайной величины Х представим в виде ряда распределения:

х n

ρ n

Математическое ожидание

М (Х )=1 ∙ 1/5+2 ∙ 3/5+3 ∙ 1/5=2.

4.6 . Доказать, что математическое ожидание дискретной случайной величиныХ - числа появлений событияА вn независимых испытаниях, в каждом из которых вероятность появления события равнаρ – равно произве-дению числа испытаний на вероятность появления события в одном испыта-нии, то есть доказать, что математическое ожидание биноминального распределения

М (Х ) =n . ρ ,

а дисперсия

D (X ) =np .

Решение. Случайная величинаХ может принимать значения 0, 1, 2…,n . ВероятностьР (Х = к) находится по формуле Бернулли:

Р (Х =к)=Р n (к)=ρ к (1) n- к

Ряд распределения случайной величины Х имеет вид:

х n

ρ n

q n

ρq n- 1

ρq n- 2

ρ n

где q = 1- ρ .

Для математического ожидания имеем выражение:

М (Х )=ρq n - 1 +2 ρ 2 q n - 2 +…+.n ρ n

В случае одного испытания, то есть при n = 1для случайной величиныХ 1 –числа появлений событияА - ряд распределения имеет вид:

х n

ρ n

M (X 1)= 0 ∙ q+ 1 ∙ p = p

D (X 1) = p p 2 = p (1- p ) = pq .

Если Х к – число появлений событияА в к-ом испытании, тоР (Х к )= ρ и

Х=Х 1 2 +….+Х n .

Отсюда получаем

М (Х )(Х 1 )(Х 2)+ (Х n )= ,

D (X )=D (X 1)+D (X 2)+ ... +D (X n )=npq.

4.7. ОТК проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равна 0,9. В каждой партии содержится 5 изделий. Найти математическое ожидание дискретной случайной величиныХ -числа партий, в каждой из которых окажется равно 4 стандартных изделия – если проверке подлежит 50 партий.

Решение . Вероятность того, что в каждой произвольно выбранной партии окажется 4 стандартных изделия, постоянна; обозначим ее черезρ .Тогда математическое ожидание случайной величиныХ равноМ (Х )= 50∙ρ.

Найдем вероятность ρ по формуле Бернулли:

ρ=Р 5 (4)== 0,94∙0,1=0,32.

М (Х )= 50∙0,32=16.

4.8 . Бросаются три игральные кости. Найти математическое ожидание суммы выпавших очков.

Решение. Можно найти распределение случайной величиныХ - суммы выпавших очков и затем ее математическое ожидание. Однако такой путь слишком громоздок. Проще использовать другой прием, представляя случайную величинуХ , математическое ожидание которой требуется вычислить, в виде суммы нескольких более простых случайных величин, математическое ожидание которых вычислить легче. Если случайная величинаХ i – это число очков, выпавших наi – й кости (i = 1, 2, 3), то сумма очковХ выразится в виде

Х = Х 1 + Х 2 + Х 3 .

Для вычисления математического ожидания исходной случайной величины останется лишь воспользоваться свойством математического ожидании

М (Х 1 + Х 2 + Х 3 ) = М (Х 1 ) + М (Х 2) + М (Х 3 ).

Очевидно, что

Р (Х i = К )= 1/6, К = 1, 2, 3, 4, 5, 6, i = 1, 2, 3.

Следовательно, математическое ожидание случайной величины Х i имеет вид

М (Х i ) = 1/6∙1 + 1/6∙2 +1/6∙3 + 1/6∙4 + 1/6∙5 + 1/6∙6 = 7/2,

М (Х ) = 3∙7/2 = 10,5.

4.9. Определить математическое ожидание числа приборов, отказавших в работе за время испытаний, если:

а) вероятность отказа для всех приборов одна и та же равна р , а число испытуемых приборов равно n ;

б) вероятность отказа для i го прибора равна p i , i = 1, 2, … , n .

Решение. Пусть случайная величина Х – число отказавших приборов, тогда

Х = Х 1 + Х 2 + … + Х n ,

X i =

Ясно, что

Р (Х i = 1)= Р i , Р (Х i = 0)= 1Р i , i= 1, 2,, n.

М (Х i )= 1∙Р i + 0∙(1–Р i ) i ,

М (Х )(Х 1)(Х 2)+ … +М (Х n ) 1 2 + … +Р n .

В случае «а» вероятность отказа приборов одна и та же, то есть

Р i =p , i= 1, 2, , n .

М (Х )= np .

Этот ответ можно было получить сразу, если заметить, что случайная величина Х имеет биномиальное распределение с параметрами (n , p ).

4.10. Две игральные кости бросают одновременно два раза. Написать биномиальный закон распределения дискретной случайной величины Х – числа выпадения четного числа очков на двух игральных костях.

Решение. Пусть

А ={выпадение четного числа на первой кости},

В = {выпадение четного числа на второй кости}.

Выпадение четного числа на обеих костях при одном бросании выразится произведением АВ. Тогда

Р (АВ ) = Р (А )∙Р (В ) =
.

Результат второго бросания двух игральных костей не зависит от первого, поэтому применима формула Бернулли при

n = 2, р = 1/4, q = 1 – р = 3/4.

Случайная величина Х может принимать значения 0, 1, 2, вероятность которых найдем по формуле Бернулли:

Р (Х= 0) = Р 2 (0) = q 2 = 9/16,

Р (Х= 1) = Р 2 (1) = С , р q = 6/16,

Р (Х= 2) = Р 2 (2) = С , р 2 = 1/16.

Ряд распределения случайной величины Х:

4.11. Устройство состоит из большого числа независимо работающих элементов с одинаковой очень малой вероятностью отказа каждого элемента за время t . Найти среднее число отказавших за время t элементов, если вероятность того, что за это время откажет хотя бы один элемент, равна 0,98.

Решение. Число отказавших за время t элементов – случайная величина Х , которая распределена по закону Пуассона, поскольку число элементов велико, элементы работают независимо и вероятность отказа каждого элемента мала. Среднее число появлений события в n испытаниях равно

М (Х ) = np .

Поскольку вероятность отказа К элементов из n выражается формулой

Р n (К )
,

где  = np , то вероятность того, что не откажет ни один элемент за время t получим при К = 0:

Р n (0) = е -  .

Поэтому вероятность противоположного события – за время t откажет хотя бы один элемент – равна 1 - е -  . По условию задачи эта вероятность равна 0,98. Из уравнения

1 - е -  = 0,98,

е -  = 1 – 0,98 = 0,02,

отсюда  = -ln 0,02 4.

Итак, за время t работы устройства откажет в среднем 4 элемента.

4.12 . Игральная кость бросается до тех пор, пока не выпадет «двойка». Найти среднее число бросаний.

Решение . Введем случайную величину Х – число испытаний, которое надо произвести, пока интересующее нас событие не наступит. Вероятность того, что Х = 1 равна вероятности того, что при одном бросании кости выпадет «двойка», т.е.

Р (Х= 1) = 1/6.

Событие Х = 2 означает, что при первом испытании «двойка» не выпала, а при втором выпала. Вероятность событияХ = 2 находим по правилу умножения вероятностей независимых событий:

Р (Х= 2) = (5/6)∙(1/6)

Аналогично,

Р (Х= 3) = (5/6) 2 ∙1/6, Р (Х= 4) = (5/6) 2 ∙1/6

и т.д. Получим ряд распределения вероятностей:

(5/6) к ∙1/6

Среднее число бросаний (испытаний) есть математическое ожидание

М (Х ) = 1∙1/6 + 2∙5/6∙1/6 + 3∙(5/6) 2 ∙1/6 + … + К (5/6) К -1 ∙1/6 + … =

1/6∙(1+2∙5/6 +3∙(5/6) 2 + … + К (5/6) К -1 + …)

Найдем сумму ряда:

К g К -1 = (g К ) g
.

Следовательно,

М (Х ) = (1/6) (1/ (1 – 5/6) 2 = 6.

Таким образом, нужно осуществить в среднем 6 бросаний игральной кости до тех пор, пока не выпадет «двойка».

4.13. Производятся независимые испытания с одинаковой вероятностью появления события А в каждом испытании. Найти вероятность появления события А , если дисперсия числа появлений события в трех независимых испытаниях равна 0,63.

Решение. Число появлений события в трех испытаниях является случайной величиной Х , распределенной по биномиальному закону. Дисперсия числа появлений события в независимых испытаниях (с одинаковой вероятностью появления события в каждом испытании) равна произведению числа испытаний на вероятности появления и непоявления события (задача 4.6)

D (Х ) = npq .

По условию n = 3, D (Х ) = 0,63, поэтому можно р найти из уравнения

0,63 = 3∙р (1),

которое имеет два решения р 1 = 0,7 и р 2 = 0,3.

Примеры решения задач на тему «Случайные величины».

Задача 1 . В лотерее выпущено 100 билетов. Разыгрывался один выигрыш в 50 у.е. и десять выигрышей по 10 у.е. Найти закон распределения величины X – стоимости возможного выигрыша.

Решение. Возможные значения величины X: x 1 = 0; x 2 = 10 и x 3 = 50. Так как «пустых» билетов – 89, то p 1 = 0,89, вероятность выигрыша 10 у.е. (10 билетов) – p 2 = 0,10 и для выигрыша 50 у.е. – p 3 = 0,01. Таким образом:

0,89

0,10

0,01

Легко проконтролировать: .

Задача 2. Вероятность того, что покупатель ознакомился заранее с рекламой товара равна 0,6 (р=0,6 ). Осуществляется выборочный контроль качества рекламы путем опроса покупателей до первого, изучившего рекламу заранее. Составить ряд распределения количества опрошенных покупателей.

Решение. Согласно условию задачи р = 0,6. Откуда: q=1 -p = 0,4. Подставив данные значения, получим: и построим ряд распределения:

p i

0,24

Задача 3. Компьютер состоит из трех независимо работающих элементов: системного блока, монитора и клавиатуры. При однократном резком повышении напряжения вероятность отказа каждого элемента равна 0,1. Исходя из распределения Бернулли составить закон распределения числа отказавших элементов при скачке напряжения в сети.

Решение. Рассмотрим распределение Бернулли (или биномиальное): вероятность того, что в n испытаниях событие А появится ровно k раз: , или:

qn

pn

В ернёмся к задаче.

Возможные значения величины X (число отказов):

x 0 =0 – ни один из элементов не отказал;

x 1 =1 – отказ одного элемента;

x 2 =2 – отказ двух элементов;

x 3 =3 – отказ всех элементов.

Так как, по условию, p = 0,1, то q = 1 – p = 0,9. Используя формулу Бернулли, получим

, ,

, .

Контроль: .

Следовательно, искомый закон распределения:

0,729

0,243

0,027

0,001

Задача 4 . Произведено 5000 патронов. Вероятность того, что один патрон бракованный . Какова вероятность того, что во всей партии будет ровно 3 бракованных патрона?

Решение. Применим распределение Пуассона : это распределение используется для определения вероятности того, что при очень большом

количестве испытаний (массовые испытания), в каждом из которых вероятность события A очень мала, событие A наступитk раз: , где .

Здесь n = 5000, p = 0,0002, k = 3. Находим , тогда искомая вероятность: .

Задача 5 . При стрельбе до первого попадания с вероятностью попадания p = 0,6 при выстреле надо найти вероятность того, что попадание произойдет при третьем выстреле.

Решение. Применим геометрическое распределение: пусть производятся независимые испытания, в каждом из которых событие A имеет вероятность появления p (и непоявления q = 1 – p). Испытания заканчиваются, как только произойдет событие A.

При таких условиях вероятность того, что событие A произойдет на k-ом испытании, определяется по формуле: . Здесь p = 0,6; q = 1 – 0,6 = 0,4;k = 3. Следовательно, .

Задача 6 . Пусть задан закон распределения случайной величины X:

Найти математическое ожидание.

Решение. .

Заметим, что вероятностный смысл математического ожидания – это среднее значение случайной величины.

Задача 7 . Найти дисперсию случайной величины X со следующим законом распределения:

Решение. Здесь .

Закон распределения квадрата величины X 2 :

X2

Искомая дисперсия: .

Дисперсия характеризует меру отклонения (рассеяния) случайной величины от её математического ожидания.

Задача 8 . Пусть случайная величина задается распределением:

10м

Найти её числовые характеристики.

Решение: м, м 2 ,

М 2 , м.

Про случайную величину X можно сказать либо – ее математическое ожидание 6,4 м с дисперсией 13,04 м 2 , либо – ее математическое ожидание 6,4 м с отклонением м. Вторая формулировка, очевидно, нагляднее.

Задача 9. Случайная величина X задана функцией распределения:
.

Найти вероятность того, что в результате испытания величина X примет значение, заключенное в интервале .

Решение. Вероятность того, что X примет значение из заданного интервала, равно приращению интегральной функции в этом интервале, т.е. . В нашем случае и , поэтому

.

Задача 10. Дискретная случайная величина X задана законом распределения:

Найти функцию распределения F (x ) и построить ее график.

Решение. Так как функция распределения,

для , то

при ;

при ;

при ;

при ;

Соответствующий график:


Задача 11. Непрерывная случайная величина X задана дифференциальной функцией распределения: .

Найти вероятность попадания X в интервал

Решение. Заметим, что это частный случай показательного закона распределения.

Воспользуемся формулой: .

Задача 12. Найти числовые характеристики дискретной случайной величины X, заданной законом распределения:

–5

X 2 :

X 2

. , где – функция Лапласа.

Значения этой функции находятся с помощью таблицы.

В нашем случае: .

По таблице находим: , следовательно:

Назначение сервиса . Онлайн-калькулятор используется для построения таблицы распределения случайной величины X – числа произведенных опытов и вычисления всех характеристик ряда: математического ожидания, дисперсии и среднеквадратического отклонения. Отчет с решением оформляется в формате Word .
Пример 1 . В урне белых и черных шара. Шары наудачу достают из урны без возвращения до тех пор, пока не появится белый шар. Как только это произойдет, процесс прекращается.
Данный тип заданий относится к задаче построения геометрического распределения .

Пример 2 . Два Три стрелка делают по одному выстрелу в мишень. Вероятность попадания в нее первым стрелком равна , вторым – . Составить закон распределения случайной величины Х – числа попаданий в мишень.

Пример 2a . Стрелок делает по два три четыре выстрела. Вероятность попадания при соответствующем выстреле равна , . При первом промахе стрелок в дальнейших состязаниях не участвует. Составить закон распределения случайной величины Х - число попаданий в мишень.

Пример 3 . В партии из деталей бракованных стандартных. Контролер наудачу достает детали. Составить закон распределения случайной величины Х – числа бракованных годных деталей в выборке.
Аналогичное задание : В корзине m красных и n синих шаров. Наудачу вынимают k шаров. Составить закон распределения ДСВ X – появление синих шаров.
см. другие примеры решений .

Пример 4 . Вероятность появления события в одном испытании равна . Производится испытаний. Составить закон распределения случайной величины Х – числа появлений события.
Аналогичные задания для этого вида распределения :
1. Составить закон распределения случайной величины Х числа попаданий при четырех выстрелах, если вероятность попадания в цель при одном выстреле равна 0.8 .
2. Монету подбрасывают 7 раз. Найти математическое ожидание и дисперсию числа появлений герба. Составить таблицу распределения Х – числа появлений герба.

Пример №1 . Бросаются три монеты. Вероятность выпадения герба при одном бросании равна 0.5. Составьте закон распределения случайной величины X - числа выпавших гербов.
Решение.
Вероятность того, что не выпало ни одного герба: P(0) = 0,5*0,5*0,5= 0,125
P(1) = 0,5 *0,5*0,5 + 0,5*0,5 *0,5 + 0,5*0,5*0,5 = 3*0,125=0,375
P(2) = 0,5 *0,5 *0,5 + 0,5 *0,5*0,5 + 0,5*0,5 *0,5 = 3*0,125=0,375
Вероятность того, что выпало три герба: P(3) = 0,5*0,5*0,5 = 0,125

Закон распределения случайной величины X:

X 0 1 2 3
P 0,125 0,375 0,375 0,125
Проверка: P = P(0) + P(1) + P(2) + P(3) = 0,125 + 0,375 + 0,375 + 0,125 = 1

Пример №2 . Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:

  1. Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p 1 *(1-p 2)=0.8*(1-0.85)=0.12
  2. Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p 1)*p 2 =(1-0.8)*0.85=0.17
  3. Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p 1 *p 2 =0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97

Можно выделить наиболее часто встречающиеся законы распределения дискретных случайных величин:

  • Биномиальный закон распределения
  • Пуассоновский закон распределения
  • Геометрический закон распределения
  • Гипергеометрический закон распределения

Для данных распределений дискретных случайных величин расчет вероятностей их значений, а также числовых характеристик (математическое ожидание, дисперсия, и т.д.) производится по определенных «формулам». Поэтому очень важно знать данные типы распределений и их основные свойства.


1. Биномиальный закон распределения.

Дискретная случайная величина $X$ подчинена биномиальному закону распределения вероятностей, если она принимает значения $0,\ 1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)=C^k_n\cdot p^k\cdot {\left(1-p\right)}^{n-k}$. Фактически, случайная величина $X$ - это число появлений события $A$ в $n$ независимых испытаний . Закон распределения вероятностей случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & \dots & n \\
\hline
p_i & P_n\left(0\right) & P_n\left(1\right) & \dots & P_n\left(n\right) \\
\hline
\end{array}$

Для такой случайной величины математическое ожидание $M\left(X\right)=np$, дисперсия $D\left(X\right)=np\left(1-p\right)$.

Пример . В семье двое детей. Считая вероятности рождения мальчика и девочки равными $0,5$, найти закон распределения случайной величины $\xi $ - числа мальчиков в семье.

Пусть случайная величина $\xi $ - число мальчиков в семье. Значения, которые может принимать $\xi:\ 0,\ 1,\ 2$. Вероятности этих значений можно найти по формуле $P\left(\xi =k\right)=C^k_n\cdot p^k\cdot {\left(1-p\right)}^{n-k}$, где $n=2$ - число независимых испытаний, $p=0,5$ - вероятность появления события в серии из $n$ испытаний. Получаем:

$P\left(\xi =0\right)=C^0_2\cdot {0,5}^0\cdot {\left(1-0,5\right)}^{2-0}={0,5}^2=0,25;$

$P\left(\xi =1\right)=C^1_2\cdot 0,5\cdot {\left(1-0,5\right)}^{2-1}=2\cdot 0,5\cdot 0,5=0,5;$

$P\left(\xi =2\right)=C^2_2\cdot {0,5}^2\cdot {\left(1-0,5\right)}^{2-2}={0,5}^2=0,25.$

Тогда закон распределения случайной величины $\xi $ есть соответствие между значениями $0,\ 1,\ 2$ и их вероятностями, то есть:

$\begin{array}{|c|c|}
\hline
\xi & 0 & 1 & 2 \\
\hline
P(\xi) & 0,25 & 0,5 & 0,25 \\
\hline
\end{array}$

Сумма вероятностей в законе распределения должна быть равна $1$, то есть $\sum _{i=1}^{n}P(\xi _{{\rm i}})=0,25+0,5+0,25=1 $.

Математическое ожидание $M\left(\xi \right)=np=2\cdot 0,5=1$, дисперсия $D\left(\xi \right)=np\left(1-p\right)=2\cdot 0,5\cdot 0,5=0,5$, среднее квадратическое отклонение $\sigma \left(\xi \right)=\sqrt{D\left(\xi \right)}=\sqrt{0,5}\approx 0,707$.

2. Закон распределения Пуассона.

Если дискретная случайная величина $X$ может принимать только целые неотрицательные значения $0,\ 1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$, то говорят, что она подчинена закону распределения Пуассона с параметром $\lambda $. Для такой случайной величины математическое ожидание и дисперсия равны между собой и равны параметру $\lambda $, то есть $M\left(X\right)=D\left(X\right)=\lambda $.

Замечание . Особенность этого распределения заключается в том, что мы на основании опытных данных находим оценки $M\left(X\right),\ D\left(X\right)$, если полученные оценки близки между собой, то у нас есть основание утверждать, что случайная величина подчинена закону распределения Пуассона.

Пример . Примерами случайных величин, подчиненных закону распределения Пуассона, могут быть: число автомашин, которые будут обслужены завтра автозаправочной станцией; число бракованных изделий в произведенной продукции.

Пример . Завод отправил на базу $500$ изделий. Вероятность повреждения изделия в пути равна $0,002$. Найти закон распределения случайной величины $X$, равной числу поврежденных изделий; чему равно $M\left(X\right),\ D\left(X\right)$.

Пусть дискретная случайная величина $X$ - число поврежденных изделий. Такая случайная величина подчинена закону распределения Пуассона с параметром $\lambda =np=500\cdot 0,002=1$. Вероятности значений равны $P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$. Очевидно, что все вероятности всех значений $X=0,\ 1,\ \dots ,\ 500$ перечислить невозможно, поэтому мы ограничимся лишь первыми несколькими значениями.

$P\left(X=0\right)={{1^0}\over {0!}}\cdot e^{-1}=0,368;$

$P\left(X=1\right)={{1^1}\over {1!}}\cdot e^{-1}=0,368;$

$P\left(X=2\right)={{1^2}\over {2!}}\cdot e^{-1}=0,184;$

$P\left(X=3\right)={{1^3}\over {3!}}\cdot e^{-1}=0,061;$

$P\left(X=4\right)={{1^4}\over {4!}}\cdot e^{-1}=0,015;$

$P\left(X=5\right)={{1^5}\over {5!}}\cdot e^{-1}=0,003;$

$P\left(X=6\right)={{1^6}\over {6!}}\cdot e^{-1}=0,001;$

$P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$

Закон распределения случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & ... & k \\
\hline
P_i & 0,368; & 0,368 & 0,184 & 0,061 & 0,015 & 0,003 & 0,001 & ... & {{{\lambda }^k}\over {k!}}\cdot e^{-\lambda } \\
\hline
\end{array}$

Для такой случайной величины математическое ожидание и дисперсия равным между собой и равны параметру $\lambda $, то есть $M\left(X\right)=D\left(X\right)=\lambda =1$.

3. Геометрический закон распределения.

Если дискретная случайная величина $X$ может принимать только натуральные значения $1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)=p{\left(1-p\right)}^{k-1},\ k=1,\ 2,\ 3,\ \dots $, то говорят, что такая случайная величина $X$ подчинена геометрическому закону распределения вероятностей. Фактически, геометрическое распределения представляется собой испытания Бернулли до первого успеха.

Пример . Примерами случайных величин, имеющих геометрическое распределение, могут быть: число выстрелов до первого попадания в цель; число испытаний прибора до первого отказа; число бросаний монеты до первого выпадения орла и т.д.

Математическое ожидание и дисперсия случайной величины, подчиненной геометрическому распределению, соответственно равны $M\left(X\right)=1/p$, $D\left(X\right)=\left(1-p\right)/p^2$.

Пример . На пути движения рыбы к месту нереста находится $4$ шлюза. Вероятность прохода рыбы через каждый шлюз $p=3/5$. Построить ряд распределения случайной величины $X$ - число шлюзов, пройденных рыбой до первого задержания у шлюза. Найти $M\left(X\right),\ D\left(X\right),\ \sigma \left(X\right)$.

Пусть случайная величина $X$ - число шлюзов, пройденных рыбой до первого задержания у шлюза. Такая случайная величина подчинена геометрическому закону распределения вероятностей. Значения, которые может принимать случайная величина $X:$ 1, 2, 3, 4. Вероятности этих значений вычисляются по формуле: $P\left(X=k\right)=pq^{k-1}$, где: $p=2/5$ - вероятность задержания рыбы через шлюз, $q=1-p=3/5$ - вероятность прохода рыбы через шлюз, $k=1,\ 2,\ 3,\ 4$.

$P\left(X=1\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^0={{2}\over {5}}=0,4;$

$P\left(X=2\right)={{2}\over {5}}\cdot {{3}\over {5}}={{6}\over {25}}=0,24;$

$P\left(X=3\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^2={{2}\over {5}}\cdot {{9}\over {25}}={{18}\over {125}}=0,144;$

$P\left(X=4\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^3+{\left({{3}\over {5}}\right)}^4={{27}\over {125}}=0,216.$

$\begin{array}{|c|c|}
\hline
X_i & 1 & 2 & 3 & 4 \\
\hline
P\left(X_i\right) & 0,4 & 0,24 & 0,144 & 0,216 \\
\hline
\end{array}$

Математическое ожидание:

$M\left(X\right)=\sum^n_{i=1}{x_ip_i}=1\cdot 0,4+2\cdot 0,24+3\cdot 0,144+4\cdot 0,216=2,176.$

Дисперсия:

$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2=}0,4\cdot {\left(1-2,176\right)}^2+0,24\cdot {\left(2-2,176\right)}^2+0,144\cdot {\left(3-2,176\right)}^2+$

$+\ 0,216\cdot {\left(4-2,176\right)}^2\approx 1,377.$

Среднее квадратическое отклонение:

$\sigma \left(X\right)=\sqrt{D\left(X\right)}=\sqrt{1,377}\approx 1,173.$

4. Гипергеометрический закон распределения.

Если $N$ объектов, среди которых $m$ объектов обладают заданным свойством. Случайных образом без возвращения извлекают $n$ объектов, среди которых оказалось $k$ объектов, обладающих заданным свойством. Гипергеометрическое распределение дает возможность оценить вероятность того, что ровно $k$ объектов в выборке обладают заданным свойством. Пусть случайная величина $X$ - число объектов в выборке, обладающих заданным свойством. Тогда вероятности значений случайной величины $X$:

$P\left(X=k\right)={{C^k_mC^{n-k}_{N-m}}\over {C^n_N}}$

Замечание . Статистическая функция ГИПЕРГЕОМЕТ мастера функций $f_x$ пакета Excel дает возможность определить вероятность того, что определенное количество испытаний будет успешным.

$f_x\to $ статистические $\to $ ГИПЕРГЕОМЕТ $\to $ ОК . Появится диалоговое окно, которое нужно заполнить. В графе Число_успехов_в_выборке указываем значение $k$. Размер_выборки равен $n$. В графе Число_успехов_в_совокупности указываем значение $m$. Размер_совокупности равен $N$.

Математическое ожидание и дисперсия дискретной случайной величины $X$, подчиненной геометрическому закону распределения, соответственно равны $M\left(X\right)=nm/N$, $D\left(X\right)={{nm\left(1-{{m}\over {N}}\right)\left(1-{{n}\over {N}}\right)}\over {N-1}}$.

Пример . В кредитном отделе банка работают 5 специалистов с высшим финансовым образованием и 3 специалиста с высшим юридическим образованием. Руководство банка решило направить 3 специалистов Для повышения квалификации, отбирая их в случайном порядке.

а) Составьте ряд распределения числа специалистов с высшим финансовым образованием, которые могут быть направлены на повышение квалификации;

б) Найдите числовые характеристики этого распределения.

Пусть случайная величина $X$ - число специалистов с высшим финансовым образованием среди трех отобранных. Значения, которые может принимать $X:0,\ 1,\ 2,\ 3$. Данная случайная величина $X$ распределена по гипергеометрическому распределению с параметрами: $N=8$ - размер совокупности, $m=5$ - число успехов в совокупности, $n=3$ - размер выборки, $k=0,\ 1,\ 2,\ 3$ - число успехов в выборке. Тогда вероятности $P\left(X=k\right)$ можно рассчитать по формуле: $P(X=k)={C_{m}^{k} \cdot C_{N-m}^{n-k} \over C_{N}^{n} } $. Имеем:

$P\left(X=0\right)={{C^0_5\cdot C^3_3}\over {C^3_8}}={{1}\over {56}}\approx 0,018;$

$P\left(X=1\right)={{C^1_5\cdot C^2_3}\over {C^3_8}}={{15}\over {56}}\approx 0,268;$

$P\left(X=2\right)={{C^2_5\cdot C^1_3}\over {C^3_8}}={{15}\over {28}}\approx 0,536;$

$P\left(X=3\right)={{C^3_5\cdot C^0_3}\over {C^3_8}}={{5}\over {28}}\approx 0,179.$

Тогда ряд распределения случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & 2 & 3 \\
\hline
p_i & 0,018 & 0,268 & 0,536 & 0,179 \\
\hline
\end{array}$

Рассчитаем числовые характеристики случайной величины $X$ по общим формулам гипергеометрического распределения.

$M\left(X\right)={{nm}\over {N}}={{3\cdot 5}\over {8}}={{15}\over {8}}=1,875.$

$D\left(X\right)={{nm\left(1-{{m}\over {N}}\right)\left(1-{{n}\over {N}}\right)}\over {N-1}}={{3\cdot 5\cdot \left(1-{{5}\over {8}}\right)\cdot \left(1-{{3}\over {8}}\right)}\over {8-1}}={{225}\over {448}}\approx 0,502.$

$\sigma \left(X\right)=\sqrt{D\left(X\right)}=\sqrt{0,502}\approx 0,7085.$