Как рассчитать объем бетона? Как рассчитать объем емкости различной формы.
Одна из интереснейших задач геометрии, результат решения которой важен и в физике, и в химии, и в других областях - определение объемов. Занимаясь математикой в школе, детки часто задаются мыслью: «Зачем нам это нужно?» Мир вокруг кажется настолько простым и понятным, что определенные школьные знания относят к разряду «ненужных». Но стоит столкнуться, к примеру, с транспортировкой и возникает вопрос о том, как посчитать объем груза. Скажете, что ничего проще нет? Ошибаетесь. Знание расчетных формул, понятий "плотности вещества", "объемной плотности тел" становятся необходимы.
Школьные знания - практическая основа
Учителя школ, преподавая основы геометрии, предлагают нам такое определение объема: часть пространства, занимаемая телом. При этом формулы определения объемов давно записаны, и найти их можно в справочниках. Определить объем тела правильной формы человечество научилось задолго до появления трактатов Архимеда. Но только этот великий греческий мыслитель ввел методику, дающую возможность определить объем любой фигуры. Его умозаключения стали основой интегрального исчисления. Объемными считают фигуры, получаемые в процессе вращения плоских
Евклидова геометрия с определенной точностью позволяет определить объем:
Отличие плоских и объемных фигур не позволяет ответить на вопрос некоторых страдальцев о том, как посчитать объем прямоугольника. Это, примерно, так же, как найти то, не знаю что. Путаница в геометрическом материале возможна, при этом прямоугольником иногда называют прямоугольный параллелепипед.
Что предпринимать, если форма тела не столь четко определена?
Определение объема сложных геометрических конструкций - работа не из легких. Стоит руководствоваться несколькими незыблемыми принципами.
- Любое тело можно разбить на более простые части. Объем равен сумме объемов его отдельных частей.
- Равновеликие тела имеют равные объемы, параллельный перенос тел не меняет его объема.
- Единицей объема считают объем куба с ребром единичной длины.
Наличие тел неправильной формы (вспомним пресловутую корону царя Герона) не становится проблемой. Определение объемов тел вполне возможно. Это процесс непосредственного измерения объемов жидкости с погруженным в нее телом, который будет рассмотрен ниже.
Различные прикладные задачи на определение объема
Вернемся к проблеме: как посчитать объем перевозимых грузов. Каким является груз: фасованным или сыпучим? Каковы параметры тары? Вопросов больше, чем ответов. Немаловажным станет вопрос массы груза, поскольку транспорт отличается грузоподъемностью, а трассы - максимальным весом транспортного средства. Нарушение правил перевозки грозит штрафными санкциями.
Задача 1. Пусть груз представляет собой прямоугольные контейнеры, заполненные товаром. Зная вес товара и контейнера, можно с легкостью определить суммарный вес. Объем контейнера определяем как объем прямоугольного параллелепипеда.
Зная грузоподъемность транспорта, его габариты, можно просчитать возможный объем перевозимого груза. Верное соотношение этих параметров позволяет избежать катастрофы, преждевременного выхода транспорта из строя.
Задача 2. Груз - сыпучий материал: песок, щебень и тому подобное. На этом этапе без знаний физики обойтись может только классный специалист, опыт которого в грузоперевозках позволяет интуитивно определить предельно допустимый к перевозке объем.
Научный метод предполагает знание такого параметра, как груза.
Используется формула V=m/ρ, где m - масса груза, ρ - плотность материала. Перед тем как посчитать объем, стоит узнать плотность груза, что также совсем не сложно (таблицы, лабораторное определение).
Эта методика также замечательно работает при определении объемов жидких грузов. При этом как единицу измерения используют литр.
Определение объемов строительных форм
Вопрос определения объемов играет немаловажную роль в строительстве. Возведение домов, других сооружений - дело затратное, стройматериалы требуют внимательного отношения и предельно точного расчета.
Основа здания - фундамент - представляет собой обычно литую конструкцию, заполняемую бетоном. Перед тем необходимо определить тип фундамента.
Плитный фундамент - плита в виде прямоугольного параллелепипеда. Столбчатое основание - прямоугольные или цилиндрические столбы определенного сечения. Определив объем одного столба и умножив его на количество, можно рассчитать кубатуру бетона на весь фундамент.
Рассчитывая объем бетона для стен или перекрытий, поступают достаточно просто: определяют объем всей стены, умножая длину на ширину и высоту, затем отдельно определяют объемы оконных и дверных проемов. Разность объема стены и суммарного объема проемов - объем бетона.
Как определить объем здания?
Некоторые прикладные задачи требуют знаний об объеме зданий и сооружений. К ним относятся проблемы ремонта, реконструкции, определения влажности воздуха, вопросы, связанные с теплоснабжением и вентиляцией.
Прежде чем ответить на вопрос о том, как посчитать объем здания, делают замеры по внешней его стороне: площади сечения (длина умножается на ширину), высоты здания от нижней части первого этажа до чердака.
Определение внутренних объемов отапливаемых помещений проводят по внутренним обводкам.
Устройство систем отопления
Современные квартиры и офисы невозможно представить без системы отопления. Основной частью систем являются батареи и соединительные трубы. Как посчитать объем системы отопления? Полный объем всех секций отопления, который указан на самом радиаторе, необходимо сложить с объемом труб.
И на этом этапе встает проблема: как посчитать объем трубы. Представим, что труба - цилиндр, решение приходит само собой: используем формулу цилиндра. В отопительных системах трубы заполняются водой, поэтому необходимо знать площадь внутреннего сечения трубы. Для этого определяем ее внутренний радиус (R). Формула определения площади круга: S=πR 2 . Общая длина труб определяется по их протяженности в помещении.
Канализация в доме - система труб
Закладывая трубы для водоотведения, также стоит знать объем трубы. На этом этапе необходим внешний диаметр, действия аналогичны предыдущим.
Определение объема металла, который идет на изготовление трубы - также интересная задача. Геометрически труба - цилиндр с пустотами. Определить площадь кольца, лежащего в ее сечении - задача достаточно сложная, но решаемая. Более простой выход - определить внешний и внутренний объемы трубы, разность этих величин и будет объемом металла.
Определение объемов в задачах физики
Знаменитая легенда о короне царя Герона стала известной не только вследствие решения задачи выведения «на чистую воду» вороватых ювелиров. Итог сложной мыслительной деятельности Архимеда - определение объемов тел неправильной геометрической формы. Основная мысль, извлеченная философом - объем вытесненной телом жидкости равен объему тела.
В лабораторных исследованиях пользуются мерным цилиндром (мензуркой). Определяют объем жидкости (V 1), погружают в нее тело, выполняют вторичные измерения (V 2). Объем равен разности вторичных и первичных измерений: V т = V 2 - V 1 .
Такой метод определения объемов тел используют при вычислении объемной плотности сыпучих нерастворимых материалов. Он крайне удобен при определении плотности сплавов.
Вычислить объем булавки можно с применением этого метода. Кажется, достаточно сложно определить объем столь маленького тела, как булавка или дробинка. Линейкой его не измерить, мерный цилиндр также достаточно велик.
Но если использовать несколько совершенно одинаковых булавок (n), то можно при помощи мерного цилиндра определить их суммарный объем (V т = V 2 - V 1) . Затем полученную величину разделить на количество булавок. V= V т \n.
Эта задача становится понятной, если из одного большого куска свинца необходимо отлить множество дробинок.
Единицы измерения объема жидкости
Интернациональная система единиц предполагает измерение объемов в м 3 . В обыденной жизни чаще используют внесистемные единицы: литр, миллилитр. Когда определяются, как посчитать объем в литрах, используют систему перевода: 1 м 3 = 1000 литров.
Использование в повседневной жизни иных внесистемных мер может вызвать трудности. Англичане используют более привычные для них баррели, галлоны, бушели.
Система перевода:
Задачи с нестандартными данными
Задача 1. Как посчитать объем, зная высоту и площадь? Обычно такую задачу решают, определяя объем покрытия различных деталей гальваническим путем. При этом площадь поверхности детали (S) известна. Толщина слоя (h) - высота. Объем определяют произведением площади и высоты: V=Sh.
Задача 2. Для кубов интересной, с математической точки зрения, может выглядеть задача определения объема, если известна площадь одной грани. Известно, что объем куба: V=a 3 , где а - длина его грани. Площадь боковой поверхности куба S=a 2 . Извлекая из площади, получаем длину грани куба. Используем формулу объема, вычисляем его значение.
Задача 3. Вычислить объем фигуры, если известна площадь и даны некоторые параметры. К дополнительным параметрам можно отнести условия соотношения сторон, высот, диаметров основания и многое другое.
Для решения конкретных задач понадобятся не только знания формул расчета объемов, но и другие формулы геометрии.
Определение объемов памяти
Совершенно не связанная с геометрией задача: определить объем памяти электронных устройств. В современном, достаточно компьютеризованном мире эта проблема не бывает лишней. Точные устройства, какими являются персональные компьютеры, не терпят приблизительности.
Знание объемов памяти флешки или иного накопителя полезно при копировании, перемещении информации.
Немаловажно знать объем оперативной и постоянной памяти компьютера. Часто пользователь сталкивается с ситуацией, когда «не идет игра», «виснет программа». Проблема вполне возможна при низком объеме памяти.
Считается байт и его производные (килобайт, мегабайт, терабайт).
1 кБ = 1024 Б
1 МБ = 1024 кБ
1 ГБ = 1024 Мб
Странность в данной системе перерасчета следует из двоичной системы кодирования информации.
Размер памяти запоминающего устройства является его основной характеристикой. Сравнивая объем переносимой информации и объем памяти накопителя, можно определить возможность его дальнейшей эксплуатации.
Понятие «объема» настолько масштабно, что в полной мере уяснить его многогранность можно только решая прикладные задачи, интересные и увлекательные.
Все величины указываем в мм
H — Уровень жидкости.
Y — Резервуар в высоту.
L — Длина емкости.
X — Резервуар в ширину.
Данная программа выполняет вычисления объема жидкости в различных по размеру емкостях прямоугольной формы, также поможет рассчитать площадь поверхности резервуара, свободный и общий объем.
По итогам вычисления Вы узнаете:
- Полную площадь резервуара;
- Площадь боковой поверхности;
- Площадь дна;
- Свободный объем;
- Количество жидкости;
- Объем емкости.
Технология расчета количества жидкости в резервуарах разной формы
Когда емкость неправильной геометрической формы (к примеру, в виде пирамиды, параллелепипеда, прямоугольника и т.д.) необходимо в первую очередь выполнить измерения внутренних линейных размеров и только после этого произвести вычисления.
Расчет объема жидкости в прямоугольной емкости небольших размеров, вручную можно выполнить следующим образом. Необходимо залить жидкостью весь резервуар до краев. Тогда объем воды в данном случае станет равен объему резервуара. Далее следует слить аккуратно всю воду в отдельные емкости. К примеру, в специальный резервуар правильной геометрической формы или измеряющий цилиндр. По измерительной шкале Вы сможете визуально определить объем Вашего резервуара. Для расчета количества жидкости в прямоугольной емкости Вам лучше всего воспользоваться нашей онлайн программой, которая быстро и точно выполнить все вычисления.
Если резервуар большого размера, и в ручную невозможно измерить количество жидкости, то можно использовать формулу массы газа с молярной известной массой. К примеру, масса азота М=0,028 кг/моль. Данные вычисления возможны, когда резервуар можно плотно закрыть (герметически). Теперь при помощи термометра измеряем температуру внутри резервуара, и манометром внутреннее давление. Температура должна быть выражена в Кельвинах, а давление в Паскалях. Вычислить объем внутреннего газа можно следующей формуле (V=(m∙R∙T)/(M∙P)). То есть массу газа (m) умножаем на температуру его (Т) и газовую константу (R). Далее полученный результат следует разделить на давление газа (Р) и молярную массу (М). Объем будет выражен в м³.
Как вычислить и узнать объем аквариума по размерам самостоятельно
Аквариумы – стеклянные сосуды, которые заполняют чистой водой до определенного уровня. Многие собственники аквариума неоднократно задумывались, какого объема их резервуар, как можно выполнить вычисления. Самый простой и надежный метод, это воспользоваться рулеткой и замерять все необходимые параметры, которые следует вбить в соответствующие ячейки нашего калькулятора, и Вы сразу же получите готовый результат.
Однако существует и другой способ определения объема аквариума, который заключается в более долгом процессе, использования литровой банки, постепенно заполняя всю емкость до соответствующего уровня.
Третий метод вычисления объема аквариума, это специальная формула. Замеряем глубину резервуара, высоту и ширину в сантиметрах. К примеру, у нас получились следующие параметры: глубина – 50 см, высота – 60 см и ширина – 100 см. Согласно этим размерами, объем аквариума рассчитывается по формуле (V=X*Y*H) или 100х50х60=3000000 см³. Далее нам необходимо полученный результат перевести в литры. Для этого готовое значение умножаем на 0,001. Отсюда следует — 0,001х3000000 сантиметров, и получаем, объем нашего резервуара составит 300 литров. Это мы вычислили полную вместительность емкости, далее необходимо вычислить реальный уровень воды.
Каждый аквариум наполняют значительно ниже, чем его реальная высота, дабы избежать перелива воды, чтобы закрыть крышкой с учетом стяжки. К примеру, когда наш аквариум высотой 60 сантиметров, тогда вклеенные стяжки будут располагаться на 3-5 сантиметров ниже. При нашем размере в 60 сантиметров, чуть менее 10% объема емкости припадает на 5-сантиметровые стяжки. Отсюда мы можем вычислить реальный объем 300 л – 10%=270 л.
Важно! Следует отнять несколько процентов учитывая объем стекол, размеры аквариума или любой другой емкости снимаем с наружной стороны (без учета толщины стекол).
Отсюда объем нашего резервуара будет равен 260 литров.
Измерьте все необходимые расстояния в метрах. Объем многих трехмерных фигур легко вычислить по соответствующим формулам. Однако все значения, подставляемые в формулы, должны измеряться в метрах. Таким образом, перед подстановкой значений в формулу убедитесь, что все они измеряются в метрах, или что вы конвертировали другие единицы измерения в метры.
- 1 мм = 0,001 м
- 1 см = 0,01 м
- 1 км = 1000 м
Для вычисления объема прямоугольных фигур (прямоугольный параллелепипед, куб) используйте формулу: объем = L × W × H (длину умножить на ширину умножить на высоту). Эту формулу можно рассматривать как произведение площади поверхности одной из граней фигуры на ребро, перпендикулярное этой грани.
- Например, вычислим объем комнаты длиной 4 м, шириной 3 м и высотой 2,5 м. Для этого просто умножим длину на ширину и на высоту:
- 4 × 3 × 2,5
- = 12 × 2,5
- = 30. Объем этой комнаты равен 30 м 3 .
- Куб – объемная фигура, у котрой все стороны равны. Таким образом, формулу для вычисления объема куба можно записать в виде: объем = L 3 (или W 3 , или H 3).
Для вычисления объема фигур в виде цилиндра используйте формулу: пи × R 2 × H. Вычисление объема цилиндра сводится к умножению площади круглого основания на высоту (или длину) цилиндра. Найдите площадь круглого основания, умножив число пи (3,14) на квадрат радиуса круга (R) (радиус - расстояние от центра окружности до любой точки, лежащей на этой окружности). Затем полученный результат умножьте на высоту цилиндра (H), и вы найдете объем цилиндра. Все значения измеряются в метрах.
- Например, вычислим объем колодца диаметром 1,5 м и глубиной 10 м. Разделите диаметр на 2, чтобы получить радиус: 1,5/2=0,75 м.
- (3,14) × 0,75 2 × 10
- = (3,14) × 0,5625 × 10
- = 17,66. Объем колодца равен 17,66 м 3 .
Для вычисления объема шара используйте формулу: 4/3 х пи × R 3 . То есть вам нужно знать только радиус (R) шара.
- Например, вычислим объем воздушного шара диаметром 10 м. Разделите диаметр на 2, чтобы получить радиус: 10/2=5 м.
- 4/3 х пи × (5) 3
- = 4/3 х (3,14) × 125
- = 4,189 × 125
- = 523,6. Объем воздушного шара равен 523,6 м 3 .
Для вычисления объема фигур в виде конуса используйте формулу: 1/3 х пи × R 2 × H. Объем конуса равен 1/3 объема цилиндра, который имеет такую же высоту и радиус.
- Например, вычислим объем конуса мороженного радиусом 3 см и высотой 15 см. Конвертируя в метры, получим: 0,03 м и 0,15 м соответственно.
- 1/3 х (3,14) × 0,03 2 × 0,15
- = 1/3 х (3,14) × 0.0009 × 0,15
- = 1/3 × 0.0004239
- = 0,000141. Объем конуса мороженного равен 0,000141 м 3 .
Для вычисления объема фигур неправильной формы используйте несколько формул. Для этого попробуйте разбить фигуру на несколько фигур правильной формы. Затем найдите объем каждой такой фигуры и сложите полученные результаты.
- Например, вычислим объем небольшого зернохранилища. Хранилище имеет цилиндрический корпус высотой 12 м и радиус 1,5 м. Хранилище также имеет коническую крышу высотой 1 м. Вычислив отдельно объем крыши и отдельно объем корпуса, мы можем найти общий объем зернохранилища:
- пи × R 2 × H + 1/3 х пи × R 2 × H
- (3,14) × 1,5 2 × 12 + 1/3 х (3,14) × 1,5 2 × 1
- = (3,14) × 2,25 × 12 + 1/3 х (3,14) × 2,25 × 1
- = (3,14) × 27 + 1/3 х (3,14) × 2,25
- = 84,822 + 2,356
- = 87,178. Объем зернохранилища равен 87,178 м 3 .
Для простых тел объем - это положительная величина, численное значение которой обладает следующими свойствами:
1. Равные тела имеют равные объемы.
2. Если тело разбито на части, являющиеся простыми телами, то объем этого тела равен сумме объемов его частей.
3. Объем куба, ребро которого равно единице длины, равен единице.
Если куб, о котором идет речь в определении, имеет ребро 1 см, то объем измеряется в кубических сантиметрах; если ребро куба равно , то объем измеряется в кубических
метрах; если ребро куба равно 1 км, то объем измеряется в кубических километрах и т. д.
На рисунке 181 изображено простое тело - четырехугольная пирамида SABCD. Объем этой пирамиды на основании свойства 2 равен сумме объемов пирамид SABC и SADC.
59. Объем параллелепипеда, призмы и пирамиды.
Объем прямоугольного параллелепипеда находится по формуле
где - ребра прямоугольного параллелепипеда. Исходя из этой формулы можно получить формулу для объема куба. Объем куба находят по формуле
где а - ребро куба.
Иногда говорят, что объем прямоугольного параллелепипеда равен произведению его линейных размеров или произведению площади его основания на высоту. Последнее утверждение верно и для любого параллелепипеда.
На рисунке 182 изображен наклонный параллелепипед. Его объем равен , где - площадь основания, а высота наклонного параллелепипеда.
Можно вывести правило нахождения объема любой призмы (в том числе и наклонной).
Объем призмы равен произведению площади ее основания на высоту;
В случае прямой призмы (рис. 183) высота ее совпадает с боковым ребром и объем прямой призмы равен произведению площади основания на боковое ребро.
Объем любой пирамиды находится по формуле
где S - площадь основания, Н - высота пирамиды.
На рисунке 184 изображен правильный тетраэдр SABC с ребром а. Его объем равен
Пример. В наклонном параллелепипеде основание и боковая грань - прямоугольники, площади которых соответственно равны а угол между их плоскостями равен 80°. Одна боковых граней параллелепипеда имеет площадь Найти объем параллелепипеда.
Решение. Пусть в параллелепипеде грани прямоугольники. Тогда ребро AD перпендикулярно грани Дальнейшие вычисления можно выполнить, не находя длин этих отрезков. Имеем Перемножив эти равенства почленно, получим откуда
60. Объем цилиндра и конуса.
Объем любого тела определяется следующим образом. Данное тело нмеет объем V, если существуют содержащие его простые тела и содержащиеся в нем простые тела с объемами, сколь угодно мало отличающимися от V.
Применив это определение к нахождению объемов цилиндра и конуса, можно доказать теоремы.
Объем цилиндра равен произведению площади основания на высоту, т. е.
Если радиус основания цилиндра R, а высота H, то формула его объема такова:
Объем конуса равен одной трети произведения площади основания на высоту» т. е. .
Если радиус основания конуса H, а высота II, то объем его находится по формуле
Объем усеченного конуса можно найти по формуле
где радиусы оснований, Н - высота усеченного конуса. Объем усеченного конуса, изображенного на рисунке 185, находится по формуле
61. Общая формула объемов тел вращения.
Объем шара и его частей. Для вывода формулы объема тела вращения вводят декартовы координаты в пространстве, приняв ось тела за ось Плоскость пересекает поверхность тела по линии, для которой ось х является осью симметрии. Пусть уравнение той части линии, которая расположена над осью х (рис. 186).
Общий обзор. Формулы стереометрии!
Здравствуйте, Дорогие друзья! В этой статье решил сделать общий обзор задач по стереометрии, которые будут на ЕГЭ по математик е. Нужно сказать, что задачи из этой группы довольно разнообразны, но не сложны. Это задачи на нахождение геометрических величин: длин, углов, площадей, объёмов.
Рассматриваются: куб, прямоугольный параллелепипед, призма, пирамида, составной многогранник, цилиндр, конус, шар. Печалит тот факт, что некоторые выпускники на самом экзамене за такие задачи даже не берутся., хотя более 50% из них решаются элементарно, практически устно.
Остальные требуют небольших усилий, знаний и специальных приёмов. В будущих статьях мы с вами будем рассмотривать эти задачи, не пропустите, подпишитесь на обновление блога.
Для решения необходимо знать формулы площадей поверхности и объёмов параллелепипеда, пирамиды, призмы, цилиндра, конуса и шара. Сложных задач нет, все они решаются в 2-3 действия, важно "увидеть" какую формулу необходимо применить.
Все нужные формулы представлены ниже:
Шар или сфера. Шаровой, или сферической поверхностью (иногда просто сферой) называется геометрическое место точек пространства, равноудаленных от одной точки - центра шара.
Объем шара равен объему пирамиды, основание которой имеет ту же площадь, что и поверхность шара, а высота есть радиус шара
Объем шара в полтора раза меньше, чем объем описанного вокруг него цилиндра.
Круглый конус может быть получен вращениемпрямоугольного треугольника вокруг одного из его катетов, поэтому круглый конус называт также конусом вращения. См. также Площадь поверхности круглого конуса
Объем круглого конуса равен трети произведения площади основания S на высоту H:
(H - высота ребра куба)
Параллелепипедом называется призма, основание которой параллелограмм. Параллелепипедимеет шесть граней, и все они - параллелограммы. Параллелепипед, четыре боковые грани которого - прямоугольники, называется прямым. Прямой параллелепипед у которого все шесть граней прямоугольники, называется прямоугольным.
Объем прямоугольного параллелепипеда равен произведению площади основания на высоту:
(S - площадь основания пирамиды, h - высота пирамиды)
Пирамида - это многогранник, у которого одна грань - основание пирамиды - произвольный многоугольник, а остальные - боковые грани - треугольники с общей вершиной, называемой вершиной пирамиды.
Сечение параллельное основанию пирамиды делит пирамиду на две части. Часть пирамиды между ее основанием и этим сечением - это усеченная пирамида.
Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S1 (abcde) , нижнего основания усеченной пирамиды S2 (ABCDE) и средней пропорциональной между ними.
1. | V = |
n - число сторон правильного многоугольника - основания правильной пирамиды
a - сторона правильного многоугольника - основания правильной пирамиды
h - высота правильной пирамиды
Правильная треугольная пирамида - этомногогранник, у которого одна грань - основание пирамиды - правильныйтреугольник, а остальные - боковые грани - равные треугольники с общей вершиной. Высота опускается в центр основания из вершины.
Объем правильной треугольной пирамиды равен одной трети произведения площади правильного треугольника, являющегося основанием S (ABC) на высоту h (OS)
a - сторона правильного треугольника - основания правильной треугольной пирамиды
h - высота правильной треугольной пирамиды
Вывод формулы объема тетраэдра
Объем тетраэдра расчитывается по классической формуле объема пирамиды. В нее необходимо подставитьвысоту тетраэдра и площадь правильного (равностороннего) треугольника.
Объем тетраэдра - равен дроби в числителе которой корень квадратный из двух в знаменателе двенадцать, помноженной на куб длины ребра тетраэдра
(h - длина стороны ромба)
Длина окружности p составляет примерно три целых и одну седьмую длины диаметра круга. Точное отношение длины окружности к ее диаметру обозначается греческой буквой π
В итоге периметр круга или длина окружности вычисляется по формуле
π r n |
(r - радиус дуги, n - центральный угол дуги в градусах.)