Модуль упругости алюминия кг см2. Расчетные сопротивления и модули упругости для строительных материалов
Перед тем, как использовать какой-либо материал в строительных работах, следует ознакомиться с его физическими характеристиками для того, чтобы знать как с ним обращаться, какое механическое воздействие будет для него приемлемым, и так далее. Одной из важных характеристик, на которые очень часто обращают внимание, является модуль упругости.
Ниже рассмотрим само понятие, а также эту величину по отношению к одному из самых популярных в строительстве и ремонтных работах материалу - стали. Также будут рассмотрены эти показатели у других материалов, ради примера.
Модуль упругости - что это?
Модулем упругости какого-либо материала называют совокупность физических величин , которые характеризуют способность какого-либо твёрдого тела упруго деформироваться в условиях приложения к нему силы. Выражается она буквой Е. Так она будет упомянута во всех таблицах, которые будут идти далее в статье.
Невозможно утверждать, что существует только один способ выявления значения упругости. Различные подходы к изучению этой величины привели к тому, что существует сразу несколько разных подходов. Ниже будут приведены три основных способа расчёта показателей этой характеристики для разных материалов:
Таблица показателей упругости материалов
Перед тем, как перейти непосредственно к этой характеристике стали , рассмотрим для начала, в качестве примера и дополнительной информации, таблицу, содержащую данные об этой величине по отношению к другим материалам. Данные измеряются в МПа .
Как можно заметить из представленной выше таблицы, это значение является разным для разных материалов, к тому же показателя разнятся, если учитывать тот или иной вариант вычисления этого показателя. Каждый волен выбирать именно тот вариант изучения показателей, который больше подойдёт ему. Предпочтительнее, возможно, считать модуль Юнга, так как он чаще применяется именно для характеристики того или иного материала в этом отношении.
После того как мы кратко ознакомились с данными этой характеристики других материалов, перейдём непосредственно к характеристике отдельно стали.
Для начала обратимся к сухим цифрам и выведем различные показатели этой характеристики для разных видов сталей и стальных конструкций:
- Модуль упругости (Е) для литья, горячекатанной арматуры из сталей марок, именуемых Ст.3 и Ст. 5 равняется 2,1*106 кг/см^2.
- Для таких сталей как 25Г2С и 30ХГ2С это значение равно 2*106 кг/см^2.
- Для проволоки периодического профиля и холоднотянутой круглой проволоки, существует такое значение упругости, равняющееся 1,8*106 кг/см^2. Для холодно-сплющенной арматуры показатели аналогичны.
- Для прядей и пучков высокопрочной проволоки значение равняется 2·10 6 кГ/см^2
- Для стальных спиральных канатов и канатов с металлическим сердечником значение равняется 1,5·10 4 кГ/см^2, в то время как для тросов с сердечником органическим это значение не превышает1,3·10 6 кГ/см^2 .
- Модуль сдвига (G) для прокатной стали равен 8,4·10 6 кГ/см^2 .
- И напоследок коэффициент Пуассона для стали равен значению 0,3
Это общие данные, приведённые для видов стали и стальных изделий. Каждая величина была высчитано согласно всем физическим правилам и с учётом всех имеющихся отношений, которые используются для выведения величин этой характеристики.
Ниже будет приведена вся общая информация об этой характеристике стали. Значения будут даваться как по модулю Юнга , так и по модулю сдвига, как в одних единицах измерения (МПа), так и в других (кг/см2, ньютон*м2).
Сталь и несколько разных её марок
Значения показателей упругости стали разнятся, так как существуют сразу несколько модулей , которые исчисляются и высчитываются по-разному. Можно заметить тот факт, что в принципе сильно показатели не разнятся, что свидетельствует в пользу разных исследований упругости различных материалов. Но сильно углубляться во все вычисления, формулы и значения не стоит, так как достаточно выбрать определённое значение упругости, чтобы уже в дальнейшем ориентироваться на него.
Кстати, если не выражать все значения числовыми отношениями, а взять сразу и посчитать полностью, то эта характеристика стали будет равна: Е=200000 МПа или Е=2 039 000 кг/см^2 .
Данная информация поможет разобраться с самим понятием модуля упругости, а также ознакомиться с основными значения данной характеристики для стали, стальных изделий, а также для нескольких других материалов.
Следует помнить, что показатели модуля упругости разные для различных сплавов стали и для различных стальных конструкций, которые содержат в своём составе и другие соединения. Но даже в таких условиях, можно заметить тот факт, что различаются показатели ненамного. Величина модуля упругости стали практически зависит от структуры. а также от содержания углерода. Способ горячей или холодной обработки стали также не может сильно повлиять на этот показатель.
При расчете строительных конструкций нужно знать расчетное сопротивление и модуль упругости для того или иного материала. Здесь представлены данные по основным строительным материалам.
Таблица 1. Модули упругости для основных строительных материалов
Материал
|
Модуль упругости Е, МПа |
Чугун белый, серый | (1,15...1,60) · 10 5 |
Чугун ковкий | 1,55 · 10 5 |
Сталь углеродистая | (2,0...2,1) · 10 5 |
Сталь легированная | (2,1...2,2) · 10 5 |
Медь прокатная | 1,1 · 10 5 |
Медь холоднотянутая | 1,3 · 10 3 |
Медь литая | 0,84 · 10 5 |
Бронза фосфористая катанная | 1,15 · 10 5 |
Бронза марганцевая катанная | 1,1 · 10 5 |
Бронза алюминиевая литая | 1,05 · 10 5 |
Латунь холоднотянутая | (0,91...0,99) · 10 5 |
Латунь корабельная катанная | 1,0 · 10 5 |
Алюминий катанный | 0,69 · 10 5 |
Проволока алюминиевая тянутая | 0,7 · 10 5 |
Дюралюминий катанный | 0,71 · 10 5 |
Цинк катанный | 0,84 · 10 5 |
Свинец | 0,17 · 10 5 |
Лед | 0,1 · 10 5 |
Стекло | 0,56 · 10 5 |
Гранит | 0,49 · 10 5 |
Известь | 0,42 · 10 5 |
Мрамор | 0,56 · 10 5 |
Песчаник | 0,18 · 10 5 |
Каменная кладка из гранита | (0,09...0,1) · 10 5 |
Каменная кладка из кирпича | (0,027...0,030) · 10 5 |
Бетон (см. таблицу 2) | |
Древесина вдоль волокон | (0,1...0,12) · 10 5 |
Древесина поперек волокон | (0,005...0,01) · 10 5 |
Каучук | 0,00008 · 10 5 |
Текстолит | (0,06...0,1) · 10 5 |
Гетинакс | (0,1...0,17) · 10 5 |
Бакелит | (2...3) · 10 3 |
Целлулоид | (14,3...27,5) · 10 2 |
Нормативные данные для рассчетов железобетонных конструкций
Таблица 2. Модули упругости бетона (согласно СП 52-101-2003)
Таблица 2.1 Модули упругости бетона согласно СНиП 2.03.01-84*(1996)
Примечания:
1. Над чертой указаны значения в МПа, под чертой - в кгс/см².
2. Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.
3. Для ячеистого бетона неавтоклавного твердения значения Е b принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.
4. Для напрягающего бетона значения Е b принимают как для тяжелого бетона с умножением на коэффициент
a
= 0,56 + 0,006В.
Таблица 3. Нормативные значения сопротивления бетона (согласно СП 52-101-2003)
Таблица 4. Расчетные значения сопротивления бетона сжатию (согласно СП 52-101-2003)
Таблица 4.1 Расчетные значения сопротивления бетона сжатию согласно СНиП 2.03.01-84*(1996)
Таблица 5. Расчетные значения сопротивления бетона растяжению (согласно СП 52-101-2003)
Таблица 6. Нормативные сопротивления для арматуры (согласно СП 52-101-2003)
Таблица 6.1 Нормативные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)
Таблица 6.2 Нормативные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)
Таблица 7. Расчетные сопротивления для арматуры (согласно СП 52-101-2003)
Таблица 7.1 Расчетные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)
Таблица 7.2 Расчетные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)
Нормативные данные для расчетов металлических контрукций
Таблица 8. Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе (согласно СНиП II-23-81 (1990)) листового, широкополосного универсального и фасонного проката по ГОСТ 27772-88 для стальных конструкций зданий и сооружений
Примечания:
1. За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм).
2. За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88.
3. Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, с округлением до 5 МПа (50 кгс/см²).
Таблица 9. Марки стали, заменяемые сталями по ГОСТ 27772-88 (согласно СНиП II-23-81 (1990))
Примечания:
1. Стали С345 и С375 категорий 1, 2, 3, 4 по ГОСТ 27772-88 заменяют стали категорий соответственно 6, 7 и 9, 12, 13 и 15 по ГОСТ 19281-73* и ГОСТ 19282-73*.
2. Стали С345К, С390, С390К, С440, С590, С590К по ГОСТ 27772-88 заменяют соответствующие марки стали категорий 1-15 по ГОСТ 19281-73* и ГОСТ 19282-73*, указанные в настоящей таблице.
3. Замена сталей по ГОСТ 27772-88 сталями, поставляемыми по другим государственным общесоюзным стандартам и техническим условиям, не предусмотрена.
Расчетные сопротивления для стали, используемой для производства профилированных листов здесь не показаны.
Модуль упругости Юнга и сдвига, коэффициент Пуассона значения (Таблица). Таблица модуль упругости материалов таблица
Модуль упругости для стали, а также для других материалов
Перед тем, как использовать какой-либо материал в строительных работах, следует ознакомиться с его физическими характеристиками для того, чтобы знать как с ним обращаться, какое механическое воздействие будет для него приемлемым, и так далее. Одной из важных характеристик, на которые очень часто обращают внимание, является модуль упругости.
Ниже рассмотрим само понятие, а также эту величину по отношению к одному из самых популярных в строительстве и ремонтных работах материалу - стали. Также будут рассмотрены эти показатели у других материалов, ради примера.
Модуль упругости - что это?
Модулем упругости какого-либо материала называют совокупность физических величин, которые характеризуют способность какого-либо твёрдого тела упруго деформироваться в условиях приложения к нему силы. Выражается она буквой Е. Так она будет упомянута во всех таблицах, которые будут идти далее в статье.
Невозможно утверждать, что существует только один способ выявления значения упругости. Различные подходы к изучению этой величины привели к тому, что существует сразу несколько разных подходов. Ниже будут приведены три основных способа расчёта показателей этой характеристики для разных материалов:
- Модуль Юнга (Е) описывает сопротивление материала любому растяжению или сжатию при упругой деформации. Определяется вариант Юнга отношением напряжения к деформации сжатия. Обычно именно его называют просто модулем упругости.
- Модуль сдвига (G), называемый также модулем жёсткости. Этот способ выявляет способность материала оказывать сопротивление любому изменению формы, но в условиях сохранения им своей нормы. Модуль сдвига выражается отношением напряжения сдвига к деформации сдвига, которая определяется в виде изменения прямого угла между имеющимися плоскостями, подвергающимися воздействию касательных напряжений. Модуль сдвига, кстати, является одной из составляющих такого явления, как вязкость.
- Модуль объёмной упругости (К), которые также именуется модулем объёмного сжатия. Данный вариант обозначает способность объекта из какого-либо материала изменять свой объём в случае воздействия на него всестороннего нормального напряжения, являющимся одинаковым по всем своим направлениям. Выражается этот вариант отношением величины объёмного напряжения к величине относительного объёмного сжатия.
- Существуют также и другие показатели упругости, которые измеряются в других величинах и выражаются другими отношениями. Другими ещё очень известными и популярными вариантами показателей упругости являются параметры Ламе или же коэффициент Пуассона.
Таблица показателей упругости материалов
Перед тем, как перейти непосредственно к этой характеристике стали, рассмотрим для начала, в качестве примера и дополнительной информации, таблицу, содержащую данные об этой величине по отношению к другим материалам. Данные измеряются в МПа.
Модуль упругости различных материалов
Как можно заметить из представленной выше таблицы, это значение является разным для разных материалов, к тому же показателя разнятся, если учитывать тот или иной вариант вычисления этого показателя. Каждый волен выбирать именно тот вариант изучения показателей, который больше подойдёт ему. Предпочтительнее, возможно, считать модуль Юнга, так как он чаще применяется именно для характеристики того или иного материала в этом отношении.
После того как мы кратко ознакомились с данными этой характеристики других материалов, перейдём непосредственно к характеристике отдельно стали.
Для начала обратимся к сухим цифрам и выведем различные показатели этой характеристики для разных видов сталей и стальных конструкций:
- Модуль упругости (Е) для литья, горячекатанной арматуры из сталей марок, именуемых Ст.3 и Ст. 5 равняется 2,1*106 кг/см^2.
- Для таких сталей как 25Г2С и 30ХГ2С это значение равно 2*106 кг/см^2.
- Для проволоки периодического профиля и холоднотянутой круглой проволоки, существует такое значение упругости, равняющееся 1,8*106 кг/см^2. Для холодно-сплющенной арматуры показатели аналогичны.
- Для прядей и пучков высокопрочной проволоки значение равняется 2·10 6 кГ/см^2
- Для стальных спиральных канатов и канатов с металлическим сердечником значение равняется 1,5·10 4 кГ/см^2, в то время как для тросов с сердечником органическим это значение не превышает1,3·10 6 кГ/см^2 .
- Модуль сдвига (G) для прокатной стали равен 8,4·10 6 кГ/см^2 .
- И напоследок коэффициент Пуассона для стали равен значению 0,3
Это общие данные, приведённые для видов стали и стальных изделий. Каждая величина была высчитано согласно всем физическим правилам и с учётом всех имеющихся отношений, которые используются для выведения величин этой характеристики.
Ниже будет приведена вся общая информация об этой характеристике стали. Значения будут даваться как по модулю Юнга, так и по модулю сдвига, как в одних единицах измерения (МПа), так и в других (кг/см2, ньютон*м2).
Сталь и несколько разных её марок
Значения показателей упругости стали разнятся, так как существуют сразу несколько модулей, которые исчисляются и высчитываются по-разному. Можно заметить тот факт, что в принципе сильно показатели не разнятся, что свидетельствует в пользу разных исследований упругости различных материалов. Но сильно углубляться во все вычисления, формулы и значения не стоит, так как достаточно выбрать определённое значение упругости, чтобы уже в дальнейшем ориентироваться на него.
Кстати, если не выражать все значения числовыми отношениями, а взять сразу и посчитать полностью, то эта характеристика стали будет равна: Е=200000 МПа или Е=2 039 000 кг/см^2.
Данная информация поможет разобраться с самим понятием модуля упругости, а также ознакомиться с основными значения данной характеристики для стали, стальных изделий, а также для нескольких других материалов.
Следует помнить, что показатели модуля упругости разные для различных сплавов стали и для различных стальных конструкций, которые содержат в своём составе и другие соединения. Но даже в таких условиях, можно заметить тот факт, что различаются показатели ненамного. Величина модуля упругости стали практически зависит от структуры. а также от содержания углерода. Способ горячей или холодной обработки стали также не может сильно повлиять на этот показатель.
stanok.guru
Таблица. Значения модулей продольных упругостей Е, модулей сдвигов G и коэффициентов Пуассона µ (при температуре 20oC).
|
tehtab.ru
Модуль упругости Юнга и сдвига, коэффициент Пуассона значения (Таблица)
Упругие свойства тел
Ниже приводятся справочные таблицы общеупотребительных констант; если известны две их них, то этого вполне достаточно для определения упругих свойств однородного изотропного твердого тела.
Модуль Юнга или модуль продольной упругости в дин/см2.
Модуль сдвига или модуль кручения G в дин/см2.
Модуль всестороннего сжатия или модуль объемной упругости К в дин/см2.
Объем сжимаемости k=1/K/.
Коэффициент Пуассона µ равен отношению поперечного относительного сжатия к продольному относительному растяжению.
Для однородного изотропного твердого материала имеют место следующие соотношения между этими константами:
G = E / 2(1 + μ) - (α)
μ = (E / 2G) - 1 - (b)
K = E / 3(1 - 2μ) - (c)
Коэффициент Пуассона имеет положительный знак, и его значение обычно заключено в пределах от 0,25 до 0,5, но в некоторых случаях он может выходить за указанные пределы. Степень совпадения наблюдаемых значений µ и вычисленных по формуле (b) является показателем изотропности материала.
Таблицы значений Модуля упругости Юнга, Модуля сдвига и коэффициента Пуассона
Курсивом даны значения, вычисленные из соотношений (a), (b), (c).
Материал при 18°С | Модуль Юнга E, 1011 дин/см2. | Коэффициент Пуассона µ | ||
Алюминий | ||||
Сталь (1% С) 1) | ||||
Константан 2) | ||||
Манганин | ||||
1) Для стали, содержащий около 1% С, упругие константы, как известно, меняются при термообработке. 2) 60% Cu, 40% Ni. |
Экспериментальные результаты, приводимые ниже, относятся к обычным лабораторным материалам, главным образом проволокам.
Вещество | Модуль Юнга E, 1011 дин/см2. | Модуль сдвига G, 1011 дин/см2. | Коэффициент Пуассона µ | Модуль объемной упругости К, 1011 дин/см2. |
Бронза (66% Cu) | ||||
Нейзильбер1) | ||||
Стекло иенское крон | ||||
Стекло иенское флинт | ||||
Железо сварочное | ||||
Бронза фосфористая2) | ||||
Платиноид3) | ||||
Кварцевые нити (плав.) | ||||
Резина мягкая вулканизированная | ||||
1) 60% Cu, 15% Ni, 25% Zn 2) 92,5% Cu, 7% Sn, 0,5% P 3) Нейзильбер с небольшим количеством вольфрама. |
Вещество | Модуль Юнга E, 1011 дин/см2. | Вещество | Модуль Юнга E, 1011 дин/см2. |
Цинк (чистый) | |||
Красное дерево | |||
Цирконий | |||
Сплав 90% Pt, 10% Ir | |||
Дюралюминий | |||
Шелковые нити1 | Тиковое дерево | ||
Пластмассы: | |||
Термопластичные | |||
Термореактивные | |||
Вольфрам | |||
1) Быстро уменьшается с увеличением нагрузки 2) Обнаруживает заметную упругую усталость |
Температурный коэффициент (при 150С) Et=E11 (1-ɑ (t-15)), Gt=G11 (1-ɑ (t-15)) | Сжимаемость k, бар-1 (при 7-110С) |
|||
Алюминий | Алюминий | |||
Стекло флинт | ||||
Стекло немецкое | ||||
Нейзильбер | ||||
Фосфористая бронза | ||||
Кварцевые нити |
infotables.ru
Модуль упругости (модуль Юнга) | Мир сварки
Модуль упругости
Модуль упругости (модуль Юнга) E – характеризует сопротивление материала растяжению/сжатию при упругой деформации, или свойство объекта деформироваться вдоль оси при воздействии силы вдоль этой оси; определяется как отношение напряжения к удлинению. Часто модуль Юнга называют просто модулем упругости.
1 кгс/мм2 = 10-6 кгс/м2 = 9,8·106 Н/м2 = 9,8·107 дин/см2 = 9,81·106 Па = 9,81 МПа
Металлы | |||
Алюминий | 6300-7500 | 6180-7360 | 61800-73600 |
Алюминий отожженный | 6980 | 6850 | 68500 |
Бериллий | 30050 | 29500 | 295000 |
Бронза | 10600 | 10400 | 104000 |
Бронза алюминиевая, литье | 10500 | 10300 | 103000 |
Бронза фосфористая катаная | 11520 | 11300 | 113000 |
Ванадий | 13500 | 13250 | 132500 |
Ванадий отожженный | 15080 | 14800 | 148000 |
Висмут | 3200 | 3140 | 31400 |
Висмут литой | 3250 | 3190 | 31900 |
Вольфрам | 38100 | 37400 | 374000 |
Вольфрам отожженный | 38800-40800 | 34200-40000 | 342000-400000 |
Гафний | 14150 | 13900 | 139000 |
Дюралюминий | 7000 | 6870 | 68700 |
Дюралюминий катаный | 7140 | 7000 | 70000 |
Железо кованое | 20000-22000 | 19620-21580 | 196200-215800 |
Железо литое | 10200-13250 | 10000-13000 | 100000-130000 |
Золото | 7000-8500 | 6870-8340 | 68700-83400 |
Золото отожженное | 8200 | 8060 | 80600 |
Инвар | 14000 | 13730 | 137300 |
Индий | 5300 | 5200 | 52000 |
Иридий | 5300 | 5200 | 52000 |
Кадмий | 5300 | 5200 | 52000 |
Кадмий литой | 5090 | 4990 | 49900 |
Кобальт отожженный | 19980-21000 | 19600-20600 | 196000-206000 |
Константан | 16600 | 16300 | 163000 |
Латунь | 8000-10000 | 7850-9810 | 78500-98100 |
Латунь корабельная катаная | 10000 | 9800 | 98000 |
Латунь холоднотянутая | 9100-9890 | 8900-9700 | 89000-97000 |
Магний | 4360 | 4280 | 42800 |
Манганин | 12600 | 12360 | 123600 |
Медь | 13120 | 12870 | 128700 |
Медь деформированная | 11420 | 11200 | 112000 |
Медь литая | 8360 | 8200 | 82000 |
Медь прокатанная | 11000 | 10800 | 108000 |
Медь холоднотянутая | 12950 | 12700 | 127000 |
Молибден | 29150 | 28600 | 286000 |
Нейзильбер | 11000 | 10790 | 107900 |
Никель | 20000-22000 | 19620-21580 | 196200-215800 |
Никель отожженный | 20600 | 20200 | 202000 |
Ниобий | 9080 | 8910 | 89100 |
Олово | 4000-5400 | 3920-5300 | 39200-53000 |
Олово литое | 4140-5980 | 4060-5860 | 40600-58600 |
Осмий | 56570 | 55500 | 555000 |
Палладий | 10000-14000 | 9810-13730 | 98100-137300 |
Палладий литой | 11520 | 11300 | 113000 |
Платина | 17230 | 16900 | 169000 |
Платина отожженная | 14980 | 14700 | 147000 |
Родий отожженный | 28030 | 27500 | 275000 |
Рутений отожженный | 43000 | 42200 | 422000 |
Свинец | 1600 | 1570 | 15700 |
Свинец литой | 1650 | 1620 | 16200 |
Серебро | 8430 | 8270 | 82700 |
Серебро отожженное | 8200 | 8050 | 80500 |
Сталь инструментальная | 21000-22000 | 20600-21580 | 206000-215800 |
Сталь легированная | 21000 | 20600 | 206000 |
Сталь специальная | 22000-24000 | 21580-23540 | 215800-235400 |
Сталь углеродистая | 19880-20900 | 19500-20500 | 195000-205000 |
Стальное литье | 17330 | 17000 | 170000 |
Тантал | 19000 | 18640 | 186400 |
Тантал отожженный | 18960 | 18600 | 186000 |
Титан | 11000 | 10800 | 108000 |
Хром | 25000 | 24500 | 245000 |
Цинк | 8000-10000 | 7850-9810 | 78500-98100 |
Цинк катаный | 8360 | 8200 | 82000 |
Цинк литой | 12950 | 12700 | 127000 |
Цирконий | 8950 | 8780 | 87800 |
Чугун | 7500-8500 | 7360-8340 | 73600-83400 |
Чугун белый, серый | 11520-11830 | 11300-11600 | 113000-116000 |
Чугун ковкий | 15290 | 15000 | 150000 |
Пластмассы | |||
Плексиглас | 535 | 525 | 5250 |
Целлулоид | 173-194 | 170-190 | 1700-1900 |
Стекло органическое | 300 | 295 | 2950 |
Резины | |||
Каучук | 0,80 | 0,79 | 7,9 |
Резина мягкая вулканизированная | 0,15-0,51 | 0,15-0,50 | 1,5-5,0 |
Дерево | |||
Бамбук | 2000 | 1960 | 19600 |
Береза | 1500 | 1470 | 14700 |
Бук | 1600 | 1630 | 16300 |
Дуб | 1600 | 1630 | 16300 |
Ель | 900 | 880 | 8800 |
Железное дерево | 2400 | 2350 | 32500 |
Сосна | 900 | 880 | 8800 |
Минералы | |||
Кварц | 6800 | 6670 | 66700 |
Различные материалы | |||
Бетон | 1530-4100 | 1500-4000 | 15000-40000 |
Гранит | 3570-5100 | 3500-5000 | 35000-50000 |
Известняк плотный | 3570 | 3500 | 35000 |
Кварцевая нить (плавленая) | 7440 | 7300 | 73000 |
Кетгут | 300 | 295 | 2950 |
Лед (при -2 °С) | 300 | 295 | 2950 |
Мрамор | 3570-5100 | 3500-5000 | 35000-50000 |
Стекло | 5000-7950 | 4900-7800 | 49000-78000 |
Стекло крон | 7200 | 7060 | 70600 |
Стекло флинт | 5500 | 5400 | 70600 |
Литература
- Краткий физико-технический справочник. Т.1 / Под общ. ред. К.П. Яковлева. М.: ФИЗМАТГИЗ. 1960. – 446 с.
- Справочник по сварке цветных металлов / С.М. Гуревич. Киев.: Наукова думка. 1981. 680 с.
- Справочник по элементарной физике / Н.Н. Кошкин, М.Г. Ширкевич. М., Наука. 1976. 256 с.
- Таблицы физических величин. Справочник / Под ред. И.К. Кикоина. М., Атомиздат. 1976, 1008 с.
weldworld.ru
МЕТАЛЛОВ МЕХАНИЧЕСКИЕ СВОЙСТВА | Энциклопедия Кругосвет
Содержание статьиМЕТАЛЛОВ МЕХАНИЧЕСКИЕ СВОЙСТВА. Когда на металлический образец действует сила или система сил, он реагирует на это, изменяя свою форму (деформируется). Различные характеристики, которыми определяются поведение и конечное состояние металлического образца в зависимости от вида и интенсивности сил, называются механическими свойствами металла.
Интенсивность силы, действующей на образец, называется напряжением и измеряется как полная сила, отнесенная к площади, на которую она действует. Под деформацией понимается относительное изменение размеров образца, вызванное приложенными напряжениями.
УПРУГАЯ И ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ, РАЗРУШЕНИЕ
Если напряжение, приложенное к металлическому образцу, не слишком велико, то его деформация оказывается упругой – стоит снять напряжение, как его форма восстанавливается. Некоторые металлические конструкции намеренно проектируют так, чтобы они упруго деформировались. Так, от пружин обычно требуется довольно большая упругая деформация. В других случаях упругую деформацию сводят к минимуму. Мосты, балки, механизмы, приборы делают по возможности более жесткими. Упругая деформация металлического образца пропорциональна силе или сумме сил, действующих на него. Это выражается законом Гука, согласно которому напряжение равно упругой деформации, умноженной на постоянный коэффициент пропорциональности, называемый модулем упругости: s = eY, где s – напряжение, e – упругая деформация, а Y – модуль упругости (модуль Юнга). Модули упругости ряда металлов представлены в табл. 1.
Пользуясь данными этой таблицы, можно вычислить, например, силу, необходимую для того, чтобы растянуть стальной стержень квадратного поперечного сечения со стороной 1 см на 0,1% его длины:
F = YґAґDL/L = 200 000 МПа ґ 1 см2ґ0,001 = 20 000 Н (= 20 кН)
Когда к металлическому образцу прикладываются напряжения, превышающие его предел упругости, они вызывают пластическую (необратимую) деформацию, приводящую к необратимому изменению его формы. Более высокие напряжения могут вызвать разрушение материала.
Важнейшим критерием при выборе металлического материала, от которого требуется высокая упругость, является предел текучести. У самых лучших пружинных сталей практически такой же модуль упругости, как и у самых дешевых строительных, но пружинные стали способны выдерживать гораздо большие напряжения, а следовательно, и гораздо большие упругие деформации без пластической деформации, поскольку у них выше предел текучести.
Пластические свойства металлического материала (в отличие от упругих) можно изменять путем сплавления и термообработки. Так, предел текучести железа подобными методами можно повысить в 50 раз. Чистое железо переходит в состояние текучести уже при напряжениях порядка 40 МПа, тогда как предел текучести сталей, содержащих 0,5% углерода и несколько процентов хрома и никеля, после нагревания до 950° С и закалки может достигать 2000 МПа.
Когда металлический материал нагружен с превышением предела текучести, он продолжает деформироваться пластически, но в процессе деформирования становится более твердым, так что для дальнейшего увеличения деформации требуется все больше повышать напряжение. Такое явление называется деформационным или механическим упрочнением (а также наклепом). Его можно продемонстрировать, скручивая или многократно перегибая металлическую проволоку. Деформационное упрочнение металлических изделий часто осуществляется на заводах. Листовую латунь, медную проволоку, алюминиевые стержни можно холодной прокаткой или холодным волочением довести до уровня твердости, который требуется от окончательной продукции.
Растяжение.
Соотношение между напряжением и деформацией для материалов часто исследуют, проводя испытания на растяжение, и при этом получают диаграмму растяжения – график, по горизонтальной оси которого откладывается деформация, а по вертикальной – напряжение (рис. 1). Хотя при растяжении поперечное сечение образца уменьшается (а длина увеличивается), напряжение обычно вычисляют, относя силу к исходной площади поперечного сечения, а не к уменьшенной, которая давала бы истинное напряжение. При малых деформациях это не имеет особого значения, но при больших может приводить к заметной разнице. На рис. 1 представлены кривые деформация – напряжение для двух материалов с неодинаковой пластичностью. (Пластичность – это способность материала удлиняться без разрушения, но и без возврата к первоначальной форме после снятия нагрузки.) Начальный линейный участок как той, так и другой кривой заканчивается в точке предела текучести, где начинается пластическое течение. Для менее пластичного материала высшая точка диаграммы, его предел прочности на растяжение, соответствует разрушению. Для более пластичного материала предел прочности на растяжение достигается тогда, когда скорость уменьшения поперечного сечения при деформировании становится больше скорости деформационного упрочнения. На этой стадии в ходе испытания начинается образование «шейки» (локальное ускоренное уменьшение поперечного сечения). Хотя способность образца выдерживать нагрузку уменьшается, материал в шейке продолжает упрочняться. Испытание заканчивается разрывом шейки.
Типичные значения величин, характеризующих прочность на растяжение ряда металлов и сплавов, представлены в табл. 2. Нетрудно видеть, что эти значения для одного и того же материала могут сильно различаться в зависимости от обработки.
Таблица 2 | ||||
Металлы и сплавы | Состояние | Предел текучести, МПа | Предел прочности на растяжение, МПа | Удлинение, % |
Малоуглеродистая сталь (0,2% С) | Горячекатанная | 300 | 450 | 35 |
Среднеуглеродистая сталь (0,4% С,0,5% Mn) | Упрочненная и отпущенная | 450 | 700 | 21 |
Высокопрочная сталь (0,4% С, 1,0% Mn,1,5% Si, 2,0% Cr,0,5% Мo) | Упрочненная и отпущенная | 1750 | 2300 | 11 |
Серый чугун | После литья | – | 175–300 | 0,4 |
Алюминий технически чистый | Отожженный | 35 | 90 | 45 |
Алюминий технически чистый | Деформационно-упрочненный | 150 | 170 | 15 |
Алюминиевый сплав (4,5% Cu, 1,5% Mg,0,6% Mn) | Упрочненный старением | 360 | 500 | 13 |
Полностью отожженная | 80 | 300 | 66 | |
Латунь листовая (70% Cu, 30% Zn) | Деформационно-упрочненная | 500 | 530 | 8 |
Вольфрам, проволока | Тянутая до диаметра 0,63 мм | 2200 | 2300 | 2,5 |
Свинец | После литья | 0,006 | 12 | 30 |
Сжатие.
Упругие и пластические свойства при сжатии обычно весьма сходны с тем, что наблюдается при растяжении (рис. 2). Кривая соотношения между условным напряжением и условной деформацией при сжатии проходит выше соответствующей кривой для растяжения только потому, что при сжатии поперечное сечение образца не уменьшается, а увеличивается. Если же по осям графика откладывать истинное напряжение и истинную деформацию, то кривые практически совпадают, хотя при растяжении разрушение происходит раньше.
Твердость.
Твердость материала – это его способность сопротивляться пластической деформации. Поскольку испытания на растяжение требуют дорогостоящего оборудования и больших затрат времени, часто прибегают к более простым испытаниям на твердость. При испытаниях по методам Бринелля и Роквелла в поверхность металла при заданных нагрузке и скорости нагружения вдавливают «индентор» (наконечник, имеющий форму шара или пирамиды). Затем измеряют (часто это делается автоматически) размер отпечатка, и по нему определяют показатель (число) твердости. Чем меньше отпечаток, тем больше твердость. Твердость и предел текучести – это в какой-то мере сравнимые характеристики: обычно при увеличении одной из них увеличивается и другая.
Может сложиться впечатление, что в металлических материалах всегда желательны максимальные предел текучести и твердость. На самом деле это не так, и не только по экономическим соображениям (процессы упрочнения требуют дополнительных затрат).
Во-первых, материалам необходимо придавать форму различных изделий, а это обычно осуществляется с применением процессов (прокатки, штамповки, прессования), в которых важную роль играет пластическая деформация. Даже при обработке на металлорежущем станке очень существенна пластическая деформация. Если твердость материала слишком велика, то для придания ему нужной формы требуются слишком большие силы, вследствие чего режущие инструменты быстро изнашиваются. Такого рода трудности можно уменьшить, обрабатывая металлы при повышенной температуре, когда они становятся мягче. Если же горячая обработка невозможна, то используется отжиг металла (медленные нагрев и охлаждение).
Во-вторых, по мере того как металлический материал становится тверже, он обычно теряет пластичность. Иначе говоря, материал становится хрупким, если его предел текучести столь велик, что пластическая деформация не происходит вплоть до тех напряжений, которые сразу же вызывают разрушение. Конструктору обычно приходится выбирать какие-то промежуточные уровни твердости и пластичности.
Ударная вязкость и хрупкость.
Вязкость противоположна хрупкости. Это способность материала сопротивляться разрушению, поглощая энергию удара. Например, стекло хрупкое, потому что оно не способно поглощать энергию за счет пластической деформации. При столь же резком ударе по листу мягкого алюминия не возникают большие напряжения, так как алюминий способен к пластической деформации, поглощающей энергию удара.
Существует много разных методов испытания металлов на ударную вязкость. При использовании метода Шарпи призматический образец металла с надрезом подставляют под удар отведенного маятника. Работу, затраченную на разрушение образца, определяют по расстоянию, на которое маятник отклоняется после удара. Такие испытания показывают, что стали и многие металлы ведут себя как хрупкие при пониженных температурах, но как вязкие – при повышенных. Переход от хрупкого поведения к вязкому часто происходит в довольно узком температурном диапазоне, среднюю точку которого называют температурой хрупко-вязкого перехода. Другие испытания на ударную вязкость тоже указывают на наличие такого перехода, но измеренная температура перехода изменяется от испытания к испытанию в зависимости от глубины надреза, размеров и формы образца, а также от метода и скорости ударного нагружения. Поскольку ни в одном из видов испытаний не воспроизводится весь диапазон рабочих условий, испытания на ударную вязкость ценны лишь тем, что позволяют сравнивать разные материалы. Тем не менее они дали много важной информации о влиянии сплавления, технологии изготовления и термообработки на склонность к хрупкому разрушению. Температура перехода для сталей, измеренная по методу Шарпи с V-образным надрезом, может достигать +90° С, но соответствующими легирующими присадками и термообработкой ее можно понизить до -130° С.
Хрупкое разрушение стали было причиной многочисленных аварий, таких, как неожиданные прорывы трубопроводов, взрывы сосудов давления и складских резервуаров, обвалы мостов. Среди самых известных примеров – большое количество морских судов типа «Либерти», обшивка которых неожиданно расходилась во время плавания. Как показало расследование, выход из строя судов «Либерти» был обусловлен, в частности, неправильной технологией сварки, оставлявшей внутренние напряжения, плохим контролем за составом сварного шва и дефектами конструкции. Сведения, полученные в результате лабораторных испытаний, позволили существенно уменьшить вероятность таких аварий. Температура хрупко-вязкого перехода некоторых материалов, например вольфрама, кремния и хрома, в обычных условиях значительно выше комнатной. Такие материалы обычно считаются хрупкими, и придавать им нужную форму за счет пластической деформации можно только при нагреве. В то же время медь, алюминий, свинец, никель, некоторые марки нержавеющих сталей и другие металлы и сплавы вообще не становятся хрупкими при понижении температуры. Хотя многое уже известно о хрупком разрушении, это явление нельзя еще считать полностью изученным.
Усталость.
Усталостью называется разрушение конструкции под действием циклических нагрузок. Когда деталь изгибается то в одну, то в другую сторону, ее поверхности поочередно подвергаются то сжатию, то растяжению. При достаточно большом числе циклов нагружения разрушение могут вызывать напряжения, значительно более низкие, чем те, при которых происходит разрушение в случае однократного нагружения. Знакопеременные напряжения вызывают локализованные пластическую деформацию и деформационное упрочнение материала, в результате чего с течением времени возникают малые трещины. Концентрация напряжений вблизи концов таких трещин заставляет их расти. Сначала трещины растут медленно, но по мере уменьшения поперечного сечения, на которое приходится нагрузка, напряжения у концов трещин увеличиваются. При этом трещины растут все быстрее и, наконец, мгновенно распространяются на все сечение детали. См. также РАЗРУШЕНИЯ МЕХАНИЗМЫ.
Усталость, несомненно, является самой распространенной причиной выхода конструкций из строя в условиях эксплуатации. Особенно подвержены этому детали машин, работающие в условиях циклического нагружения. В авиастроении усталость оказывается очень важной проблемой из-за вибрации. Во избежание усталостного разрушения приходится часто проверять и заменять детали самолетов и вертолетов.
Ползучесть.
Ползучестью (или крипом) называется медленное нарастание пластической деформации металла под действием постоянной нагрузки. С появлением воздушно-реактивных двигателей, газовых турбин и ракет стали приобретать все более важное значение свойства материалов при повышенных температурах. Во многих областях техники дальнейшее развитие сдерживается ограничениями, связанными с высокотемпературными механическими свойствами материалов.
При нормальных температурах пластическая деформация устанавливается почти мгновенно, как только прикладывается соответствующее напряжение, и в дальнейшем мало увеличивается. При повышенных же температурах металлы не только становятся мягче, но и деформируются так, что деформация продолжает нарастать со временем. Такая зависящая от времени деформация, или ползучесть, может ограничивать срок службы конструкций, которые должны длительное время работать при повышенных температурах.
Чем больше напряжения и чем выше температура, тем больше скорость ползучести. Типичные кривые ползучести представлены на рис. 3. После начальной стадии быстрой (неустановившейся) ползучести эта скорость уменьшается и становится почти постоянной. Перед разрушением скорость ползучести вновь увеличивается. Температура, при которой ползучесть становится критической, неодинакова для разных металлов. Предметом забот телефонных компаний является ползучесть подвесных кабелей в свинцовой оболочке, работающих при обычных температурах окружающей среды; в то же время некоторые специальные сплавы могут работать при 800° С, не обнаруживая чрезмерной ползучести.
Срок службы деталей в условиях ползучести может определяться либо предельно допустимой деформацией, либо разрушением, и конструктор должен всегда иметь в виду эти два возможных варианта. Пригодность материалов для изготовления изделий, рассчитанных на длительную работу при повышенных температурах, например лопаток турбин, трудно оценить заранее. Испытания за время, равное предполагаемому сроку службы, зачастую практически невозможны, а результаты кратковременных (ускоренных) испытаний не так просто экстраполировать на более длительные сроки, поскольку может измениться характер разрушения. Хотя механические свойства жаропрочных сплавов постоянно улучшаются, перед металлофизиками и материаловедами всегда будет стоять задача создания материалов, способных выдерживать еще более высокие температуры. См. также МЕТАЛЛОВЕДЕНИЕ ФИЗИЧЕСКОЕ.
КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА
Выше речь шла об общих закономерностях поведения металлов под действием механических нагрузок. Чтобы лучше понять соответствующие явления, нужно рассмотреть атомное строение металлов. Все твердые металлы – кристаллические вещества. Они состоят из кристаллов, или зерен, расположение атомов в которых соответствует правильной трехмерной решетке. Кристаллическую структуру металла можно представить как состоящую из атомных плоскостей, или слоев. Когда прикладывается напряжение сдвига (сила, заставляющая две соседние плоскости металлического образца скользить друг по другу в противоположных направлениях), один слой атомов может сдвинуться на целое межатомное расстояние. Такой сдвиг скажется на форме поверхности, но не на кристаллической структуре. Если один слой сдвинется на много межатомных расстояний, то на поверхности образуется «ступенька». Хотя отдельные атомы слишком малы, чтобы их можно было увидеть под микроскопом, ступеньки, образовавшиеся за счет скольжения, хорошо видны под микроскопом и названы линиями скольжения.
Обычные металлические предметы, встречающиеся нам ежедневно, являются поликристаллическими, т.е. состоят из большого числа кристаллов, в каждом из которых своя ориентация атомных плоскостей. Деформация обычного поликристаллического металла имеет с деформацией монокристалла то общее, что она происходит за счет скольжения по атомным плоскостям в каждом кристалле. Заметное же скольжение целых кристаллов по их границам наблюдается только в условиях ползучести при повышенных температурах. Средний размер одного кристалла, или зерна, может составлять от нескольких тысячных до нескольких десятых долей сантиметра. Желательна более мелкая зернистость, так как механические характеристики мелкозернистого металла лучше, чем у крупнозернистого. Кроме того, мелкозернистые металлы менее хрупки.
Скольжение и дислокации.
Процессы скольжения удалось подробнее исследовать на монокристаллах металлов, выращенных в лаборатории. При этом выяснилось не только то, что скольжение происходит в некоторых определенных направлениях и обычно по вполне определенным плоскостям, но и то, что монокристаллы деформируются при очень малых напряжениях. Переход монокристаллов в состояние текучести начинается для алюминия при 1, а для железа – при 15–25 МПа. Теоретически же этот переход в обоих случаях должен происходить при напряжениях ок. 10 000 МПа. Такое расхождение между экспериментальными данными и теоретическими расчетами на протяжении многих лет оставалось важной проблемой. В 1934 Тейлор, Полани и Орован предложили объяснение, основанное на представлении о дефектах кристаллической структуры. Они высказали предположение, что при скольжении сначала происходит смещение в какой-то точке атомной плоскости, которое затем распространяется по кристаллу. Граница между сдвинувшейся и несдвинувшейся областями (рис. 4) представляет собой линейный дефект кристаллической структуры, названный дислокацией (на рисунке эта линия уходит в кристалл перпендикулярно плоскости рисунка). Когда к кристаллу прикладывается напряжение сдвига, дислокация движется, вызывая скольжение по плоскости, в которой она находится. После того как дислокации образовались, они очень легко движутся по кристаллу, чем и объясняется «мягкость» монокристаллов.
В кристаллах металлов обычно имеется множество дислокаций (общая длина дислокаций в одном кубическом сантиметре отожженного металлического кристалла может составлять более 10 км). Но в 1952 научные сотрудники лабораторий корпорации «Белл телефон», испытывая на изгиб очень тонкие нитевидные кристаллы («усы») олова, обнаружили, к своему удивлению, что изгибная прочность таких кристаллов близка к теоретическому значению для совершенных кристаллов. Позднее были обнаружены чрезвычайно прочные нитевидные кристаллы и многих других металлов. Как предполагают, столь высокая прочность обусловлена тем, что в таких кристаллах либо вообще нет дислокаций, либо имеется одна, идущая по всей длине кристалла.
Температурные эффекты.
Влияние повышенных температур можно объяснить, исходя из представлений о дислокациях и зеренной структуре. Многочисленные дислокации в кристаллах деформационно-упрочненного металла искажают кристаллическую решетку и увеличивают энергию кристалла. Когда же металл нагревается, атомы становятся подвижными и перестраиваются в новые, более совершенные кристаллы, содержащие меньше дислокаций. С такой рекристаллизацией и связано разупрочнение, которое наблюдается при отжиге металлов.
www.krugosvet.ru
ЗАДАЧНИК ОНЛ@ЙН БИБЛИОТЕКА 1 БИБЛИОТЕКА 2 Примечание. Значение модуля упругости зависит от структуры, химическая состава и способа обрабртки материила. Поэтому значения E могут отличаться от средних значений, приведенных в таблице. | Таблица модуль Юнга. Модуль упругости. Определение модуля Юнга. Коэффицент запаса прочности.Таблица модуль Юнга
Предел прочности материалаДопускаемое механическое напряжение в некоторых метериалах (при растяжении)Коэффициент запаса прочностиПродолжение будет... |
www.kilomol.ru
Материал | Модули упругости, МПа | Коэффициент Пуассона | |
Модуль ЮнгаE | Модуль сдвигаG | ||
Чугун белый, серый Чугун ковкий | (1,15...1,60)·105 1,55·105 | 4,5·104 - | 0,23...0,27 - |
Сталь углеродистая Сталь легированная | (2,0...2,1)·105 (2,1...2,2)·105 | (8,0...8,1)·104 (8,0...8,1)·104 | 0,24...0,28 0,25...0,30 |
Медь прокатная Медь холоднотянутая Медь литая | 1,1·105 1,3·105 0,84·105 | 4,0·104 4,9·104 - | 0,31...0,34 - - |
Бронза фосфористая катаная Бронза марганцовистой катаная Бронза алюминиевая литая | 1,15·105 1,1·105 1,05·105 | 4,2·104 4,0·104 4,2·104 | 0,32...0,35 0,35 - |
Латунь холоднотянутая Латунь корабельная катаная | (0,91...0,99)·105 1,0·105 | (3,5...3,7)·104 - | 0,32...0,42 0,36 |
Алюминий катаный Проволока алюминиевая тянутая Дюралюминий катаный | 0,69·105 0,7·105 0,71·105 | (2,6...2,7)·104 - 2,7·104 | 0,32...0,36 - - |
Цинк катаный | 0,84·105 | 3,2·104 | 0,27 |
Свинец | 0,17·105 | 0,7·104 | 0,42 |
Лед | 0,1·105 | (0,28...0,3)·104 | - |
Стекло | 0,56·105 | 0,22·104 | 0,25 |
Гранит | 0,49·105 | - | - |
Известняк | 0,42·105 | - | - |
Мрамор | 0,56·105 | - | - |
Песчаник | 0,18·105 | - | - |
Каменная кладка из гранита Каменная кладка из известняка Каменная кладка из кирпича | (0,09...0,1)·105 0,06·105 (0,027...0,030)·105 | - - - | - - - |
Бетон при пределе прочности, МПа: 10 15 20 | (0,146...0,196)·105 (0,164...0,214)·105 (0,182...0,232)·105 | - - - | 0,16...0,18 0,16...0,18 0,16...0,18 |
Древесина вдоль волокон Древесина поперек волокон | Мобильный бетонный завод на шасси
Материал | Модуль упругости Е , МПа |
Чугун белый, серый | (1,15...1,60) . 10 5 |
» ковкий | 1,55 . 10 5 |
Сталь углеродистая | (2,0...2,1) . 10 5 |
» легированная | (2,1...2,2) . 10 5 |
Медь прокатная | 1,1 . 10 5 |
» холоднотянутая | 1,3 . 10 3 |
» литая | 0,84 . 10 5 |
Бронза фосфористая катанная | 1,15 . 10 5 |
Бронза марганцевая катанная | 1,1 . 10 5 |
Бронза алюминиевая литая | 1,05 . 10 5 |
Латунь холоднотянутая | (0,91...0,99) . 10 5 |
Латунь корабельная катанная | 1,0 . 10 5 |
Алюминий катанный | 0,69 . 10 5 |
Проволока алюминиевая тянутая | 0,7 . 10 5 |
Дюралюминий катанный | 0,71 . 10 5 |
Цинк катанный | 0,84 . 10 5 |
Свинец | 0,17 . 10 5 |
Лед | 0,1 . 10 5 |
Стекло | 0,56 . 10 5 |
Гранит | 0,49 . 10 5 |
Известь | 0,42 . 10 5 |
Мрамор | 0,56 . 10 5 |
Песчаник | 0,18 . 10 5 |
Каменная кладка из гранита | (0,09...0,1) . 10 5 |
» из кирпича | (0,027...0,030) . 10 5 |
Бетон (см. таблицу 2) | |
Древесина вдоль волокон | (0,1...0,12) . 10 5 |
» поперек волокон | (0,005...0,01) . 10 5 |
Каучук | 0,00008 . 10 5 |
Текстолит | (0,06...0,1) . 10 5 |
Гетинакс | (0,1...0,17) . 10 5 |
Бакелит | (2...3) . 10 3 |
Целлулоид | (14,3...27,5) . 10 2 |
Примечание : 1. Для определения модуля упругости в кгс/см 2 табличное значение умножается на 10 (более точно на 10.1937)
2. Значения модулей упругости Е для металлов, древесины , каменной кладки следует уточнять по соответствующим СНиПам.
Нормативные данные для расчетов железобетонных конструкций:
Таблица 2. Начальные модули упругости бетона (согласно СП 52-101-2003)
Таблица 2.1. Начальные модули упругости бетона согласно СНиП 2.03.01-84*(1996)
Примечания : 1. Над чертой указаны значения в МПа, под чертой - в кгс/см 2 .
2. Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.
3. Для ячеистого бетона неавтоклавного твердения значения Е b принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.
4. Для напрягающего бетона значения Е b принимают как для тяжелого бетона с умножением на коэффициент a = 0,56 + 0,006В.
5. Приведенные в скобках марки бетона не точно соответствуют указанным классам бетона.
Таблица 3. Нормативные значения сопротивления бетона (согласно СП 52-101-2003)
Таблица 4. Расчетные значения сопротивления бетона (согласно СП 52-101-2003)
Таблица 4.1. Расчетные значения сопротивления бетона сжатию согласно СНиП 2.03.01-84*(1996)
Таблица 5. Расчетные значения сопротивления бетона растяжению (согласно СП 52-101-2003)
Таблица 6. Нормативные сопротивления для арматуры (согласно СП 52-101-2003)
Таблица 6.1 Нормативные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)
Таблица 6.2. Нормативные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)
Таблица 7. Расчетные сопротивления для арматуры(согласно СП 52-101-2003)
Таблица 7.1. Расчетные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)
Таблица 7.2. Расчетные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)
Нормативные данные для расчетов металлических конструкций:
Таблица 8. Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе (согласно СНиП II-23-81 (1990))
листового, широкополосного универсального и фасонного проката по ГОСТ 27772-88 для стальных конструкций зданий и сооружений
Примечания :
1. За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм).
2. За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88.
3. Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, с округлением до 5 МПа (50 кгс/см 2).
Таблица 9. Марки стали, заменяемые сталями по ГОСТ 27772-88 (согласно СНиП II-23-81 (1990))
Примечания
: 1. Стали С345 и С375 категорий 1, 2, 3, 4 по ГОСТ 27772-88 заменяют стали категорий соответственно 6, 7 и 9, 12, 13 и 15 по ГОСТ 19281-73* и ГОСТ 19282-73*.
2. Стали С345К, С390, С390К, С440, С590, С590К по ГОСТ 27772-88 заменяют соответствующие марки стали категорий 1-15 по ГОСТ 19281-73* и ГОСТ 19282-73*, указанные в настоящей таблице.
3. Замена сталей по ГОСТ 27772-88 сталями, поставляемыми по другим государственным общесоюзным стандартам и техническим условиям, не предусмотрена.
Расчетные сопротивления для стали, используемой для производства профилированных листов, приводятся отдельно .
Список использованной литературы:
1. СНиП 2.03.01-84 "Бетонные и железобетонные конструкции"
2. СП 52-101-2003
3. СНиП II-23-81 (1990) "Стальные конструкции"
4. Александров А.В. Сопротивление материалов. Москва: Высшая школа. - 2003.
5. Фесик С.П. Справочник по сопротивлению материалов. Киев: Будiвельник. - 1982.
Основной главной задачей инженерного проектирования служит выбор оптимального сечения профиля и материала конструкции. Нужно найти именно тот размер, который обеспечит сохранение формы системы при минимальной возможной массе под влиянием нагрузки. К примеру, какую именно сталь следует применять в качестве пролётной балки сооружения? Материал может использоваться нерационально, усложнится монтаж и утяжелится конструкция, увеличатся финансовые затраты. На этот вопрос ответит такое понятие как модуль упругости стали. Он же позволит на самой ранней стадии избежать появления этих проблем.
Общие понятия
Модуль упругости (модуль Юнга) - это показатель механического свойства материала, характеризующий его сопротивляемость деформации растяжения . Иными словами, это значение пластичности материала. Чем выше значения модуля упругости, тем меньше будет какой-либо стержень растягиваться при иных равных нагрузках (площадь сечения, величина нагрузки и другие).
Модуль Юнга в теории упругости обозначается буквой Е. Он является составляющей закона Гука (о деформации упругих тел). Эта величина связывает возникающее в образце напряжение и его деформацию.
Измеряется эта величина согласно стандартной международной системе единиц в МПа (Мегапаскалях) . Но инженеры на практике больше склоняются к применению размерности кгс/см2.
Опытным путём осуществляется определение этого показателя в научных лабораториях. Сутью этого метода является разрыв гантелеобразных образцов материала на специальном оборудовании. Узнав удлинение и натяжение, при которых образец разрушился, делят переменные данные друг на друга. Полученная величина и является модулем (Юнга) упругости.
Таким образом определяется только модуль Юнга материалов упругих: медь, сталь и прочее. А материалы хрупкие сжимают до того момента, пока не появятся трещины: бетон, чугун и им подобные.
Механические свойства
Только при работе на растяжение или сжатие модуль (Юнга) упругости помогает угадать поведение того или иного материала . А вот при изгибе, срезе, смятии и прочих нагрузках потребуется ввести дополнительные параметры:
Кроме всего вышесказанного стоит упомянуть, что у некоторых материалов в зависимости от направления нагрузки разные механические свойства . Подобные материалы называются анизотропными. Примерами подобного является ткани, некоторые виды камня, слоистые пластмассы, древесина и прочее.
У материалов изотропных механические свойства и деформация упругая в любом направлении одинаковы. К таким материалам относятся металлы: алюминий, медь, чугун, сталь и прочее, а также каучук, бетон, естественные камни, пластмассы неслоистые.
Модуль упругости
Стоит отметить, что эта величина непостоянная. Даже для одного материала она может иметь разное значение в зависимости от того, в какие точки была приложена сила. Кое-какие пластично-упругие материалы имеют практически постоянное значение модуля упругости при работе как на растяжение, так и на сжатие: сталь, алюминий, медь. А есть и такие ситуации, когда эта величина измеряется формой профиля.
Некоторые значения (величина представлена в миллионах кгс/см2) :
- Алюминий - 0,7.
- Древесина поперёк волокон - 0,005.
- Древесина вдоль волокон - 0,1.
- Бетон - 0,02.
- Каменная гранитная кладка - 0,09.
- Каменная кирпичная кладка - 0,03.
- Бронза - 1,00.
- Латунь - 1,01.
- Чугун серый - 1,16.
- Чугун белый - 1,15.
Разница в показателях модулей упругости для сталей в зависимости от их марок:
Ещё это значение изменяется в зависимости от вида проката:
- Трос с сердечником металлическим - 1,95.
- Канат плетёный - 1,9.
- Проволока высокой прочности - 2,1.
Как видно, отклонения в значениях модулей упругой деформации стали незначительны. Именно по этой причине большинство инженеров, проводя свои расчёты, пренебрегают погрешностями и берут значение, равное 2,00.
Перевод единиц измерения модулей упругости, модулей Юнга (E), предела прочности, модулей сдвига (G), предела текучести
Для того, чтобы перевести величину в единицах: | В единицы: | |||||
Па (Н/м 2) | МПа | bar | кгс/см 2 | psf | psi | |
Следует умножить на: | ||||||
Па (Н/м 2) — единица давления СИ | 1 | 1*10 -6 | 10 -5 | 1.02*10 -5 | 0.021 | 1.450326*10 -4 |
МПа | 1*10 6 | 1 | 10 | 10.2 | 2.1*10 4 | 1.450326*10 2 |
бар | 10 5 | 10 -1 | 1 | 1.0197 | 2090 | 14.50 |
кгс/см 2 | 9.8*10 4 | 9.8*10 -2 | 0.98 | 1 | 2049 | 14.21 |
фунтов на кв. фут / pound square feet (psf) | 47.8 | 4.78*10 -5 | 4.78*10 -4 | 4.88*10 -4 | 1 | 0.0069 |
фунтов на кв. дюйм / pound square inches (psi) | 6894.76 | 6.89476*10 -3 | 0.069 | 0.07 | 144 | 1 |
Подробный список единиц давления (да, эти единицы совпадают с единицами измерения давления по размерности, но не совпадают по смыслу:)
- 1 Па (Н/м 2) = 0.0000102 Атмосфера "метрическая" / Atmosphere (metric)
- 1 Па (Н/м 2) = 0.0000099 Атмосфера стандартная Atmosphere (standard) = Standard atmosphere
- 1 Па (Н/м 2) = 0.00001 Бар / Bar
- 1 Па (Н/м 2) = 10 Барад / Barad
- 1 Па (Н/м 2) = 0.0007501 Сантиметров рт. ст. (0 °C)
- 1 Па (Н/м 2) = 0.0101974 Сантиметров во. ст. (4 °C)
- 1 Па (Н/м 2) = 10 Дин/квадратный сантиметр
- 1 Па (Н/м 2) = 0.0003346 Футов водяного столба / Foot of water (4 °C)
- 1 Па (Н/м 2) = 10 -9 Гигапаскалей
- 1 Па (Н/м 2) = 0.01 Гектопаскалей
- 1 Па (Н/м 2) = 0.0002953 Дюмов рт.ст. / Inch of mercury (0 °C)
- 1 Па (Н/м 2) = 0.0002961 Дюймов рт. ст. / Inch of mercury (15.56 °C)
- 1 Па (Н/м 2) = 0.0040186 Дюмов в.ст. / Inch of water (15.56 °C)
- 1 Па (Н/м 2) = 0.0040147 Дюмов в.ст. / Inch of water (4 °C)
- 1 Па (Н/м 2) = 0.0000102 кгс/см 2 / Kilogram force/centimetre 2
- 1 Па (Н/м 2) = 0.0010197 кгс/дм 2 / Kilogram force/decimetre 2
- 1 Па (Н/м 2) = 0.101972 кгс/м 2 / Kilogram force/meter 2
- 1 Па (Н/м 2) = 10 -7 кгс/мм 2 / Kilogram force/millimeter 2
- 1 Па (Н/м 2) = 10 -3 кПа
- 1 Па (Н/м 2) = 10 -7 Килофунтов силы/ квадратный дюйм / Kilopound force/square inch
- 1 Па (Н/м 2) = 10 -6 МПа
- 1 Па (Н/м 2) = 0.000102 Метров в.ст. / Meter of water (4 °C)
- 1 Па (Н/м 2) = 10 Микробар / Microbar (barye, barrie)
- 1 Па (Н/м 2) = 7.50062 Микронов рт.ст. / Micron of mercury (millitorr)
- 1 Па (Н/м 2) = 0.01 Милибар / Millibar
- 1 Па (Н/м 2) = 0.0075006 Миллиметров рт.ст / Millimeter of mercury (0 °C)
- 1 Па (Н/м 2) = 0.10207 Миллиметров в.ст. / Millimeter of water (15.56 °C)
- 1 Па (Н/м 2) = 0.10197 Миллиметров в.ст. / Millimeter of water (4 °C)
- 1 Па (Н/м 2) =7.5006 Миллиторр / Millitorr
- 1 Па (Н/м 2) = 1Н/м 2 / Newton/square meter
- 1 Па (Н/м 2) = 32.1507 Повседневных унций / кв. дюйм / Ounce force (avdp)/square inch
- 1 Па (Н/м 2) = 0.0208854 Фунтов силы на кв. фут / Pound force/square foot
- 1 Па (Н/м 2) = 0.000145 Фунтов силы на кв. дюйм / Pound force/square inch
- 1 Па (Н/м 2) = 0.671969 Паундалов на кв. фут / Poundal/square foot
- 1 Па (Н/м 2) = 0.0046665 Паундалов на кв. дюйм / Poundal/square inch
- 1 Па (Н/м 2) = 0.0000093 Длинных тонн на кв. фут / Ton (long)/foot 2
- 1 Па (Н/м 2) = 10 -7 Длинных тонн на кв. дюйм / Ton (long)/inch 2
- 1 Па (Н/м 2) = 0.0000104 Коротких тонн на кв. фут / Ton (short)/foot 2
- 1 Па (Н/м 2) = 10 -7 Тонн на кв. дюйм / Ton/inch 2
- 1 Па (Н/м 2) = 0.0075006 Торр / Torr
Физические характеристики материалов для стальных конструкций
проката и стальных отливок
отливок из чугуна
Коэффициент линейного расширения α , ºC -1
прокатной стали и стальных отливок
отливок из чугуна марок:
пучков и прядей параллельных проволок
спиральных и закрытых несущих
двойной свивки с неметаллическим сердечником
Модуль сдвига прокатной стали и стальных отливок G , МПа (кгс/см 2 )
Коэффициент поперечной деформации (Пуассона) ν
Примечание . Значения модуля упругости даны для канатов, предварительно вытянутых усилием не менее 60 % разрывного усилия для каната в целом.
Физические характеристики проводов и проволоки
Марка и номинальное сечение, мм 2
Коэффициент линейного расширения α; ºС -1
Алюминиевые провода по ГОСТ 839-80 *Е