Идеальный газ. Уравнение состояния идеального газа

Как уже указывалось, состояние некоторой массы газа определяется тремя термодинамическими параметрами: давлением р , объемом V и температурой Т . Между этими параметрами существует определенная связь, называемая уравнением состояния, которое в общем виде дается выражением

f (p , V , T ) = 0 ,

где каждая из переменных является функцией двух других.

Французский физик и инженер Б. Клапейрон (1799-1864) вывел уравнение состояния идеального газа, объединив законы Бойля - Мариотта и Гей-Люссака. Пусть некоторая масса газа занимает объем V 1 , имеет давление p 1 и находится при температуре Т 1 . Эта же масса газа в другом произвольном состоянии характеризуется параметрами p 2 , V 2 , Т 2 (рис.63). Переход из состояния 1 в состояние 2 осуществляется в виде двух процессов:

1) изотермического (изотерма 1 - 1 /),

2) изохорного (изохора 1 / - 2).

В соответствии с законами Бойля - Мариотта (41.1) и Гей-Люссака (41.5) запишем:

(42.1)

(42.2)

Исключив из уравнений (42.1) и (42.2) , получим

Так как состояния 1 и 2 были выбраны произвольно, то для данной массы газа

. (42.3)

Выражение (42.3) является уравнением Клапейрона , в котором В - газовая постоянная, различная для разных газов.

Русский ученый Д. И. Менделеев (1834-1907) объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (42.3) к одному молю, использовав молярный объем V m . Согласно закону Авогадро, при одинаковых р и Т моли всех газов занимают одинаковый молярный объем V m , поэтому постоянная В будет одинаковой для всех газов. Эта общая для всех газов постоянная обозначается R и называется молярной газовой постоянной . Уравнению

(42.4)

удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа , называемым также уравнением Клапейрона - Менделеева .

Числовое значение молярной газовой постоянной определим из формулы (42.4), полагая, что моль газа находится при нормальных условиях ( = 1,013×10 5 Па, = 273,15 K, = 22,41×10 -3 м 3 /моль): R = 8,31 Дж/(моль×К).

От уравнения (42.4) для моля газа можно перейти к уравнению Клапейрона - Менделеева для произвольной массы газа. Если при некоторых заданных давлении и температуре один моль газа занимает молярный объем V m , то при тех же условиях масса m газа займет объем V = (m/M) V m , где М - молярная масса (масса одного моля вещества). Единица молярной массы - килограмм на моль (кг/моль). Уравнение Клапейрона - Менделеева для массы m газа

(42.5)

где = m/M - количество вещества.

Часто пользуются несколько иной формой уравнения состояния идеального газа, вводя постоянную Больцмана : = 1,38×10 -23 Дж/К.


Исходя из этого, уравнение состояния (42.4) запишем в виде

где - концентрация молекул (число молекул в единице объема). Таким образом, из уравнения

следует, что давление идеального газа при данной температуре прямо пропорционально концентрации его молекул (или плотности газа). При одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул. Число молекул, содержащихся в 1 м 3 газа при нормальных условиях, называется числом Лошмидта (И. Лошмидт (1821-1895) - австрийский химик и физик): 2,68×10 25 м -3 .

Уравнение состояния идеального газа (уравнение Менделеева - Клапейрона).

До этого рассматривались газовые процессы, при которых один из параметров состояния газа оставался неизменным, а два других изменялись. Теперь рассмотрим общий случай, когда изменяются все три параметра состояния газа и получим уравнение, связывающее все эти параметры. Закон, описывающий такого рода процессы, был установлен в 1834г. Клапейроном (французский физик, с 183г. работал в Петербургском институте путей сообщения) путем объединения рассмотренных выше законов.

Пусть имеется некоторый газ массой “m”. На диаграмме (P, V) рассмотрим два его произвольных состояния, определяемых значениями параметров P 1 , V 1 , T 1 и P 2 , V 2 , T 2 . Из состояния 1 в состояние 2 будем переводить газ двумя процессами:

1. изотермического расширения (1®1¢);

2. изохорического охлаждения (1¢®2).

Первый этап процесса описывается законом Бойля-Мариотта, поэтому

. (9.5)

Второй этап процесса описывается законом Гей-Люссака:

Исключая из этих уравнений , получим:

. (9.7)

Поскольку состояния 1 и 2 были взяты совершенно произвольно, то можно утверждать, что для любого состояния:

где С – постоянная для данной массы газа величина.

Недостатком этого уравнения является то, что величина “C” различна для различных газов, Для устранения этого недостатка Менделеев в 1875г. несколько видоизменил закон Клапейрона, объединив его с законом Авогадро.

Запишем полученное уравнение для объема V км. одного 1 киломоля газа, обозначив постоянную буквой “R”:

Согласно закону Авогадро при одинаковых значениях P и T киломоли всех газов будут иметь одинаковые объемы V км. и, следовательно, постоянная “R” будет одинакова для всех газов.

Постоянная “R”называется универсальной газовой постоянной. Полученное уравнение связывает параметры киломоля идеального газа и, следовательно, представляет уравнение состояния идеального газа.

Значение постоянной “R” можно вычислить:

.

От уравнения для 1кмоль легко перейти к уравнению для любой массы газа “m”, приняв во внимание, что при одинаковых давлениях и температуре “z” киломолей газа будут занимать в ”z” раз больший объем, чем 1 кмоль. (V=z×V км.).

С другой стороны отношение , где m – масса газа, m – масса 1 кмоля, будет определять число молей газа.

Умножим обе части уравнения Клапейрона на величину , получим

Þ (9.7а)

Это и есть уравнение состояния идеального газа, записанное для любой массы газа.

Уравнению можно придать другой вид. Для этого введем величину

где R – универсальная газовая постоянная;

N A – число Авогадро;

Подстановка числовых значений R и N A дает следующее значение:

.

Умножим и разделим правую часть уравнения на N A , тогда , здесь – число молекул в массе газа “m”.

С учетом этого

(*)

Вводя величину – число молекул в единице объема, приходим к формуле.

Оно выведено на основе объединенного закона Бойля-Мариотта и Гей-Люссака с применением закона Авогадро. Для одной грамм-молекулы любого вещества, находящегося в идеальном газовом состоянии, уравнение Менделеева-Клапейрона имеет выражение:

Или PV = RT (11) .

В том случае, если имеется не один, а n молей газа выражение принимает вид:

где R- универсальная газовая постоянная, не зависящая от природы газа.

Так как число грамм-молей газа , где m- масса газа, а М- его молекулярная масса, то выражение (12) принимает вид:

Числовое значение R зависит от единицы измерения дав­ления и объема. Величина ее выражается в единицах энергия/моль´град. Для нахождения числовых значений R используем уравнение (11), применив его для 1 моля идеального газа, находящегося в нормальных условиях,

Подставив в уравнение (11) числовые значения Р=1 атм, T= 273° и V = 22,4 л, получаем

В международной системе единиц СИ давление выра­жается в ньютонах на м 2 (н/м 2), а объем в м 3 . Тогда .

Пользуясь уравнением Менделеева-Клапейрона можно производить следующие расчеты: а) нахождение физи­ческих параметров состояния газа по его молекулярной массе и другим данным, б) нахождение молекулярной мас­сы газа по данным о его физическом состоянии (см. при­мер 22).

Пример 11. Сколько весит азот, находящийся в газгольдере диаметром 3,6 м и высотой 25 м при темпе­ратуре 25ºС и давлении 747 мм рт. ст.?

IIример 12. В колбе емкостью 500 мл при 25ºС находится 0,615 г оксида азота (II). Каково давление газа в атмосферах, в н/м 2 ?

Пример 13. Масса колбы емкостью 750 см 3 , на­полненной кислородом при 27°С, равна 83,35 г. Масса пустой колбы 82,11 г. Определить давление кислорода и мм рт.ст. на стенки колбы.

Закон Дальтона

Сформулирован этот закон так: общее давление смесей газов, не реагирующих друг с другом, равно сумме пар­циальных давлении составных частей (компонентов).

P = p 1 + p 2 + p 3 + ….. + p n (14)

где Р - общее давление смеси газов; p 1 , p 2 , p 3 , …., p n – парциальные давления компонентов смеси.

Парциальным давлением называется давление, оказы­ваемое каждым компонентом газовой смеси, если предста­вить этот компонент занимающим объем, равный объему смеси при той же температуре. Иными словами, парциаль­ным давлением называется та часть общего давления га­зовой смеси, которая обусловлена данным газом.

Из закона Дальтона следует, что при наличии смеси газов п в уравнении (12) представляет собой сумму числа молей всех компонентов, образующих данную смесь, а Р- общее давление смеси, занимающей при температу­ре Т объем V.

Зависимость между парциальными давлениями и общим выражается уравнениями:

где n 1 , n 2 , n 3 - число молей компонента 1, 2, 3, соответ­ственно, в смеси газов.

Отношения называются мольными долями данного компонента.

Если мольную долю обозначить через N, то парциальное давление любого i-го компонента смеси (где i = 1,2,3,...) будет равно:

Таким образом, парциальное давление каждого компо­нента смеси равно произведению его мольной доли па общее давление газовой смеси.

Помимо парциального давления у газовых смесей раз­личают парциальный объем каждого из газов v 1 , v 2 , v 3 и т. д.

Парциальным называют объем, который занимал бы отдельный идеальный газ, входящий в состав идеальной смеси газов, если бы при том же количестве, он имел давление и температуру смеси.

Сумма парциальных объемов всех компонентов газовой смеси равна общему объему смеси

V = v 1 , + v 2 + v 3 + ... + v n (16) .

Отношение и т. д. называется объемной долей первого, второго и т.д. компонентов газовой смеси. Для идеальных газов мольная доля равна объемной доле. Следовательно, парциальное давление каждого ком­понента смеси равно также произведению его объемной доли на общее давление смеси.

; ; p i = r i ´P (17).

Парциальное давление обычно находят из величины общего давления с учетом состава газовой смеси. Состав газовой смеси выражают в весовых процентах, объемных процентах и в мольных процентах.

Объемным процентом называется объемная доля, уве­личенная в 100 раз (число единиц объема данного газа, содержащегося в 100 единицах объема смеси)

Мольным процентом q называется мольная доля, уве­личенная в 100 раз.

Весовой процент данного газа - число единиц массы его, содержащихся в 100 единицах массы газовой смеси.

где m 1 , m 2 – массы отдельных компонентой газовой смеси; m – общая масса смеси.

Для перехода от объемных процентов к весовым, что бывает необходимым в практических расчетах, пользуют­ся формулой:

где r i (%) - объемное процентное содержание i-гo компонен­та газовой смеси; M i -молекулярная масса этого газа; М ср - средняя молекулярная масса смеси газов, которую вычисляют по формуле

М ср = М 1 ´r 1 + M 2 ´r 2 + M 3 ´r 3 + ….. + M i ´r i (19)

где М 1 , M 2 , M 3 , M i - молекулярные мaccы отдельных газов.

Если состав газовой смеси выражен количеством масс отдельных компонентов, то среднюю молекулярную массу смеси можно выразить по формуле

где G 1 , G 2 , G 3 , G i – доли масс газов в смеси: ; ; и т.д.

Пример 14. 5 л азота под давлением 2 атм, 2 л кислорода под давлением 2,5 атм и 3 л углекислою газа под давлением 5 атм перемешаны, причем объем, пре­доставленный смеси, равен 15 л. Вычислить, под каким давлением находятся смесь и парциальные давления каж­дого газа.

Азот, занимавший объем 5 л при давлении Р 1 = 2 атм, после смешения с другими газами распространился в объе­ме V 2 = 15 л. Парциальное давление азота р N 2 = Р 2 нахо­дим из закона Бойля-Мариотта (P 1 V 1 = P 2 V 2). Откуда

Парциальное давления кислорода и углекислого газа на­ходим аналогичным способом:

Общее давление смеси равно .

Пример 15. Смесь, состоящая из 2 молей водоро­да, некоторого количества молей кислорода и 1 моля азота при 20°С и давлении 4 атм, занимает объем 40 литров. Вычислить число молей кислорода в смеси и парциальные давления каждого из газов.

Из уравнения (12) Менделеева-Клапейрона находим общее число молей всех газов, составляющих смесь

Число молей кислорода в смеси равно

Парциальные давления каждого из газов вычисляем по уравнениям (15а):

Пример 17. Состав паров бензольных углеводоро­дов над поглотительным маслом в бензольных скрубберах, выраженный в единицах массы, характеризуется такими величинами: бензола C 6 H 6 - 73%, толуола С 6 Н 5 СН 3 - 21%, ксилола С 6 Н 4 (СН 3) 2 - 4%, триметилбензола С 6 Н 3 (СН 3) 3 - 2%. Вычислить содержание каждой составной части по объе­му и парциальные давления паров каждого вещества, если общее давление смеси равно 200 мм рт. ст.

Для вычисления содержания каждой составной части смеси паров по объему используем формулу (18)

Следовательно, необходимо знать М ср, которую можно вычислить из формулы (20):

Парциальные давления каждого компонента в смеси вычисляем, используя уравнение (17)

p бензола = 0,7678´200 = 153,56 мм рт.ст. ; p толуола = 0,1875´200 = 37,50 мм рт.ст. ;

p ксилола = 0,0310´200 = 6,20 мм рт.ст. ; p триметилбензола = 0,0137´200 = 2,74 мм рт.ст.


Похожая информация.


Каждый школьник, учащийся в десятом классе, на одном из уроков физики изучает закон Клапейрона-Менделеева, его формулу, формулировку, учится применению при решении задач. В технических университетах эта тема тоже входит в курс лекций и практических работ, причем в нескольких дисциплинах, а не только на физике. Закон Клапейрона-Менделеева активно используется в термодинамике при составлении уравнений состояния идеально газа.

Термодинамика, термодинамические состояния и процессы

Термодинамика представляет собой раздел физики, который посвящен изучению общих свойств тел и тепловых явлений в этих телах без учета их молекулярного строения. Давление, объем и температура являются основными величинами, учитывающимися при описании тепловых процессов в телах. Термодинамическим процессом называется изменение состояния системы, т. е. изменение ее основных величин (давление, объем, температура). В зависимости от того, происходят ли изменения основных величин, системы бывают равновесными и неравновесными. Процессы тепловые (термодинамические) можно так классифицировать. То есть если система переходит из одного равновесного состояния в другое, то такие процессы называются, соответственно, равновесными. Неравновесные процессы, в свою очередь, характеризуются переходами неравновесных состояний, то есть основные величины претерпевают изменения. Однако можно их (процессы) разделить на обратимые (возможен обратный переход через те же состояния) и необратимые. Все состояния системы можно описать определенными уравнениями. Для упрощения расчетов в термодинамике вводится такое понятие, как идеальный газ - некая абстракция, которая характеризуется отсутствием взаимодействия на расстоянии между молекулами, размерами которых можно пренебречь ввиду их малого размера. Основные газовые законы и уравнение Менделеева-Клапейрона тесно взаимосвязаны - все законы вытекают из уравнения. Они описывают изопроцессы в системах, то есть такие процессы, в результате которых один из основных параметров остается неизменным (изохорный процесс - не изменяется объем, изотермический - постоянна температура, изобарный - происходит изменение температуры и объема при постоянстве давления). Закон Клапейрона-Менделеева стоит разобрать подробнее.


Уравнение состояния идеального газа

Закон Клапейрона-Менделеева выражает зависимость между давлением, объемом, температурой, количеством вещества именно идеального газа. Можно так же выразить зависимость только между основными параметрами, то есть абсолютной температурой, молярным объемом и давлением. Суть не изменяется, так как молярный объем равен отношению объема к количеству вещества.

Закон Менделеева-Клапейрона: формула

Уравнение состояния идеального газа записывается в виде произведения давления на молярный объем, приравненного к произведению универсальной газовой постоянной и абсолютной температуры. Универсальная газовая постоянная - коэффициент пропорциональности, константа (неизменная величина), выражающая работу расширения моля в процессе увеличения значения температуры на 1 Кельвин в условиях изобарного процесса. Ее величина составляет (приблизительно) 8,314 Дж/(моль*К). Если выразить молярный объем, то получится уравнение вида: р*V=(m/М)*R*Т. Или можно привести к виду: р=nkT, где n - концентрация атомов, к - постоянная Больцмана (R/NА).

Решение задач


Закон Менделеева-Клапейрона, решение задач с его помощью значительно облегчают расчетную часть при проектировании оборудования. Закон при решении задач применяется в двух случаях: задано одно состояние газа и его масса и при неизвестности величины массы газа известен факт ее изменения. Необходимо учитывать, что в случае многокомпонентных систем (смеси газов) записывается уравнение состояния для каждого компонента, т. е. для каждого газа в отдельности. Для установления связи между давлением смеси и давлениями компонентов используется закон Дальтона. Также стоит помнить, что для каждого состояния газа описывается отдельным уравнением, далее решается уже полученная система уравнений. И, наконец, необходимо всегда помнить, что в случае уравнения состояния идеального газа температура является абсолютной величиной, ее значение обязательно берется в Кельвинах. Если в условиях задачи температура измеряется в градусах Цельсия или в каких-либо других, то необходимо произвести перевод в градусы Кельвина.

Каждый школьник, учащийся в десятом классе, на одном из уроков физики изучает закон Клапейрона-Менделеева, его формулу, формулировку, учится применению при решении задач. В технических университетах эта тема тоже входит в курс лекций и практических работ, причем в нескольких дисциплинах, а не только на физике. Закон Клапейрона-Менделеева активно используется в термодинамике при составлении уравнений состояния идеально газа.

Термодинамика, термодинамические состояния и процессы

Термодинамика представляет собой раздел физики, который посвящен изучению общих свойств тел и тепловых явлений в этих телах без учета их молекулярного строения. Давление, объем и температура являются основными величинами, учитывающимися при описании тепловых процессов в телах. Термодинамическим процессом называется изменение состояния системы, т. е. изменение ее основных величин (давление, объем, температура). В зависимости от того, происходят ли изменения основных величин, системы бывают равновесными и неравновесными. Процессы тепловые (термодинамические) можно так классифицировать. То есть если система переходит из одного равновесного состояния в другое, то такие процессы называются, соответственно, равновесными. Неравновесные процессы, в свою очередь, характеризуются переходами неравновесных состояний, то есть основные величины претерпевают изменения. Однако можно их (процессы) разделить на обратимые (возможен обратный переход через те же состояния) и необратимые. Все состояния системы можно описать определенными уравнениями. Для упрощения расчетов в термодинамике вводится такое понятие, как идеальный газ - некая абстракция, которая характеризуется отсутствием взаимодействия на расстоянии между молекулами, размерами которых можно пренебречь ввиду их малого размера. Основные газовые законы и уравнение Менделеева-Клапейрона тесно взаимосвязаны - все законы вытекают из уравнения. Они описывают изопроцессы в системах, то есть такие процессы, в результате которых один из основных параметров остается неизменным (изохорный процесс - не изменяется объем, изотермический - постоянна температура, изобарный - происходит изменение температуры и объема при постоянстве давления). Закон Клапейрона-Менделеева стоит разобрать подробнее.

Уравнение состояния идеального газа

Закон Клапейрона-Менделеева выражает зависимость между давлением, объемом, температурой, количеством вещества именно идеального газа. Можно так же выразить зависимость только между основными параметрами, то есть абсолютной температурой, молярным объемом и давлением. Суть не изменяется, так как молярный объем равен отношению объема к количеству вещества.

Закон Менделеева-Клапейрона: формула

Уравнение состояния идеального газа записывается в виде произведения давления на молярный объем, приравненного к произведению универсальной газовой постоянной и абсолютной температуры. Универсальная газовая постоянная - коэффициент пропорциональности, константа (неизменная величина), выражающая работу расширения моля в процессе увеличения значения температуры на 1 Кельвин в условиях изобарного процесса. Ее величина составляет (приблизительно) 8,314 Дж/(моль*К). Если выразить молярный объем, то получится уравнение вида: р*V=(m/М)*R*Т. Или можно привести к виду: р=nkT, где n - концентрация атомов, к - постоянная Больцмана (R/N А).

Решение задач

Закон Менделеева-Клапейрона, решение задач с его помощью значительно облегчают расчетную часть при проектировании оборудования. Закон при решении задач применяется в двух случаях: задано одно состояние газа и его масса и при неизвестности величины массы газа известен факт ее изменения. Необходимо учитывать, что в случае многокомпонентных систем (смеси газов) записывается уравнение состояния для каждого компонента, т. е. для каждого газа в отдельности. Для установления связи между давлением смеси и давлениями компонентов используется закон Дальтона. Также стоит помнить, что для каждого состояния газа описывается отдельным уравнением, далее решается уже полученная система уравнений. И, наконец, необходимо всегда помнить, что в случае уравнения состояния идеального газа температура является абсолютной величиной, ее значение обязательно берется в Кельвинах. Если в условиях задачи температура измеряется в градусах Цельсия или в каких-либо других, то необходимо произвести перевод в градусы Кельвина.