Дополнительное оборудование для теплых полов рехау. Почему стоит выбирать теплые полы Rehau Узел регулирования теплого пола rehau g1

Применение теплых водяных полов для отопления жилых помещений позволяет получить массу преимуществ по сравнению с другими способами отопления.

Однако, теплые водяные полы нуждаются в регулировании. В противном случае все преимущества от применения теплых водяных полов обернутся сильным дискомфортом.

Поскольку теплые полы - это часть системы отопления дома, то их применение и вопросы регулирования теплых полов должны учитываться еще на этапе проектирования всей системы отопления.
С этой целью в котельной обычно устанавливают насосную группу , которая позволяет поддерживать в контурах теплого пола заданную температуру. Такое регулирование температуры теплоносителя достигается путем подмеса горячего теплоносителя (от котла) в контуры теплого пола, где происходит его постепенное остывание в результате теплоотдачи в окружающее пространство.

Следующим этапом терморегулирования теплых полов является уже регулирование параметров в контурах теплых полов, с целью поддержания комфортных условий в отдельных помещениях.

Терморегулирование отдельных контуров теплого пола осуществляется за счет управлением поступления теплоносителя в такие контуры путем периодического перекрытия проходного сечения в коллекторе теплого пола . Для этого на коллекторе теплого пола устанавливают сервоприводы, которые воздействуют на шток регулятора расхода. Управляет работой сервопривода терморегулятор теплого пола.

Важный момент: терморегулятор теплого пола может измерять температуру воздуха или температуру самого пола . Это зависит от системы отопления. Например, в санузлах обычно требуется поддержание комфортной температуры пола, причем, это не зависит от сезона. В этом случае терморегулятор должен регистрировать температуру самого пола (стяжки).
А в жилых помещениях температура теплых полов может меняться в зависимости от сезона. В таком случае следует управлять теплым полом в зависимости от температуры воздуха в помещении. Отсюда следует, что, при изменении уличной температуры, температура теплого пола тоже должна меняться.

Применение теплых водяных полов в сочетании с радиаторным отоплением диктует несколько другие требования к терморегулированию теплых полов.

Это далеко не все задачи, которые возникают при терморегулировании теплых полов или подогрева открытых площадок, дорожек, пандусов, систем снеготаяния.

Часто полезно упростить систему отопления и применять для теплых водяных полов горячий теплоноситель, который присутствует в системе радиаторного отопления. С этой целью REHAU разработаны устройства, которые размещаются непосредственно на коллекторах теплого пола и подключены к системе радиаторов (радиаторного отопления).

Применение контроллеров и таймеров для терморегулирования теплыми водяными полами позволяет не только объединить всю систему управления отоплением дома, но и осуществлять ее дистанционный мониторинг и управление, используя для этого облачные технологии.

Для решения всех задач терморегулирования теплыми полами следует обращаться к квалифицированным специалистам. Они могут предложить оптимальный вариант решения Ваших задач. В противном случае, как сказано выше, неправильное решение может не только обесценить все полезные преимущества от применения теплых водяных полов, но и оказаться весьма затратным как в части реализации, так и в части эксплуатации.




питание 220В питание 24В (с понижающим трансформатором)


Управление теплым полом при подключении к радиаторному отоплению по температуре стяжки

питание 220В питание 24В (с понижающим трансформатором)

При монтаже теплых водяных полов своими руками
мы консультируем
по вопросам терморегулирования теплого пола, системам автоматики для управления теплыми водяными полами , осуществляем поддержку
при выполнении монтажных работ, предлагаем профессиональный инструмент Рехау в аренду
и шеф-монтаж
Пишите

Системой отопления дома, работающей по принципу подогрева поверхности пола, в наше время уже сложно кого-либо удивить. Все больше владельцев загородного жилья, если еще не перешли, то всерьез рассматривают перспективы перехода на эту эффективную и комфортную схему передачи тепла от котельного оборудования в помещения. Одним из вариантов является организация водяных «теплых полов». Несмотря на немалую сложность их монтажа, они весьма популярны из-за экономичности эксплуатации, и пол причине совместимости с уже имеющейся системой водяного отопления, безусловно, после определенных доработок последней.

Вообще, затевать самостоятельное создание водяных «теплых полов», не имея никакого опыта в сантехнических и общестроительных работах – вряд ли стоит. Здесь важен каждый нюанс – от выбора труб и схемы их раскладки, от правильной термоизоляции поверхности пола и заливки стяжки – и до монтажа гидравлической части с последующей точной отладкой системы. Но так уж устроен типичный российский хозяин дома: всё ему хочется попробовать самому. И если «рука набита», то многие стараются провести такие работы самостоятельно. Им в помощь – настоящая публикация, в которой будет рассмотрен один из важнейших узлов такой системы. Итак, для чего нужен, как устроен и можно ли в домашних условиях сделать смесительный узел для теплого пола своими руками.

Какую роль в системе «теплого пола» выполняет смесительный узел?

Традиционная система отопления, подразумевающая установку приборов теплообмена в комнатах (радиаторов или конвекторов), относится к высокотемпературным. Именно под нее рассчитано абсолютное большинство котлов любого типа. Средняя температура в трубах подачи в таких системах поддерживается на уровне около 75 градусов, а нередко бывает даже и выше.

Но подобные температуры – по целому ряду причин абсолютно не допустимы для контуров «теплого пола».

  • Во-первых, это совершенно не комфортно – ходить по слишком горячей, обжигающей ноги поверхности. Для оптимального восприятия обычно достаточно температур в диапазоне 25÷30 градусов.
  • Во-вторых, сильного нагрева «не любит» ни одно напольное покрытие, а некоторые из них просто быстро выходят из строя, теряют свой вид, начинают или вспучиваться, или давать щели и трещины.
  • В третьих, высокие температуры негативно сказываются и на стяжке.
  • В-четвертых, трубы вмурованных контуров также имеют свой температурный предел, а с учетом их жестокой фиксации в слое бетона, невозможности термического расширения, в стенках труб создаются критичные напряжения, приводящие к быстрому выходу из строя.
  • И в-пятых, с учетом площади нагреваемой поверхности, участвующей в теплоотдаче, высокие температуры для создания оптимального микроклимата в помещении – совершенно излишни.

Как добиться такого «паритета» температур теплоносителя в системе. Существуют, конечно, современные котлы отопления, рассчитанные на работу в том числе и с «тёплыми полами», то есть способные поддерживать температуру в трубе подачи на уровне 35-40 градусов. Но как тогда быть с тем, что в доме предусмотрены и радиаторы, и подогрев пола – организовывать две системы? Совершенно не выгодно, сложно, громоздко, тяжело в управлении. Кроме того, такие котлы пока что еще остаются достаточно дорогим удовольствием.

Разумнее обойтись уже имеющимся оборудованием, просто внеся необходимые изменения в разводку контуров. Оптимальное решение – смешивать горячий теплоноситель с остывшим, уже отдавшим тепло в помещения, чтобы выйти на необходимый уровень температуры.

По большом счету, это ничуть не отличается от того процесса, который мы проделываем ежедневно по многу раз, открывая водопроводный кран, и вращением «барашков» или перемещением рычага добиваемся оптимальной температуры воды для принятия водных процедур, мыться посуды и других надобностей.

Понятно, что сам смесительный узел устроен намного сложнее, чем обычный кран. Его конструкция должна обеспечивать устойчивую, сбалансированную циркуляцию теплоносителя в контурах теплого пола, правильный отбор нужного количества жидкости из подающей и обратной трубы, необходимую «закольцованность» потока (когда нет необходимости притока тепла от котла), простой и понятный визуальный контроль за параметрами системы. В идеале – смесительный узел должен сам, без вмешательства человека, реагировать на изменение исходных параметров и вносить необходимые коррективы, чтобы поддерживать стабильный уровень нагрева.

Весь этот комплекс требований, на первый взгляд – кажется очень сложным, трудным для понимания и тем более самостоятельной реализации. Поэтому многие потенциальные владельцы обращают свое внимание на готовые решения – укомплектованные смесительные узлы, реализуемые в магазинах. Внешний вид таких изделий, действительно, внушает уважение своей «навороченностью», однако, и цена довольно часто просто пугает.

Но если вникнуть в сам принцип работы смесительного узла, понять где, как и за счет чего происходит процесс смешивания, если ясно представить направление потоков теплоносителя в нем, то картина проясняется. А в итоге оказывается, что собрать такой узел, приобретя необходимые детали и используя своё умение в монтаже сантехнических изделий – вполне посильная задача.

Сразу оговоримся – речь в дальнейшем будет идти в основном именно про смесительный узел. Он в дальнейшем подключается к коллектору «теплого пола», про который, безусловно, определенные упоминания просто неизбежны. Но сам коллектор, то есть его устройство, принцип работы, монтаж, балансировка – это тема для отдельной публикации, которая обязательно появится на страницах нашего портала.

Основные схемы смесительных узлов для «теплого пола»

Существует немалое количество схем смесительных узлов для водяных «тёплых полов», различающихся сложностью, компоновкой, насыщенностью приборами контроля и автоматического управления, габаритами и другими признаками. Все их рассматривать – сложно, да и незачем. Обратим внимание на те из них, которые просты и понятны, не требуют сложных элементов, и сборка которых может быть проведена любым человеком, сколь-нибудь разбирающимся в сантехническом монтаже.

На всех представленных ниже схемах слева расположены трубы общего отопительного контура. Красная стрелка показывает вход из магистрали подачи, синяя – выход в трубу «обратки».

С правой стороны – соединения насосно-смесительного узла с «гребёнками», то есть с коллектором тёплого пола, также обозначенные красной и синей стрелками. Следует понимать, что «гребенки» коллектора могут крепиться непосредственно к узлу или быть вынесенными на определенное расстояние и соединены трубной разводкой – все зависит от конкретных условий системы. Нередко обстоятельства складываются так, что смесительный узел располагается в районе котельной, а уже коллектор вынесен в помещение, в то место, от которого удобнее всего осуществить раскладку контуров «теплого пола». Сути работы насосно-смесительного узла это никак не меняет.

Полупрозрачными стрелками красных и синих оттенков показаны направления перемещения потоков теплоносителя.

Схема 1 – с двухходовым термоклапаном и последовательным подсоединением циркуляционного насоса

Одна из самых простых в исполнении схем смесительного узла. Для начала – смотрим на рисунок.

Разбираемся с комплектующими:

  • Поз. 1 – это запорные шаровые краны. Их задача – только полностью перекрывать в случае необходимости насосно-смесительный узел, например, когда в подогреве пола нет необходимости, или когда требуется проведение определенных ремонтно-профилактических работ.

Никаких особых требований, кроме высокого качества изделий, к кранам не предъявляется. Они выполняют исключительно роль запорной арматуры, и не принимают никакого участия в регулировке работы системы отопления. На них в принципе должно использоваться только два положения – полностью открыт или полностью закрыт.

Краны поз. 1.1 и 1.4, отсекающие всю систему теплого пола от общего контура отопления – обязательны. Краны поз. 1.2 и 1.3 – могут ставиться между смесительным узлом и коллектором по усмотрению мастера, но они никогда не помешают. Появляется возможность отсекать коллекторный узел для проведения каких-либо работ, не прикрывая собственно контуров теплого пола, то есть – не сбивая выверенных настроек каждого из них.

  • Поз. 2 – фильтр грубой очистки (так называемый «косой» фильтр). Его, наверное, нельзя назвать совершенно обязательным элементом смесительного узла, но стоит он недорого, а на долговечность системы повлиять способен.

Понятно, что подобные фильтрующие устройства ставятся в обязательном порядке в общей котельной. Однако, при циркуляции теплоносителя в разветвленной системе нельзя исключить попадания в него и переноса твёрдых включений, например, от радиаторов отопления. А насосно-смесительный и следующий за ним коллекторный узлы - насыщены регулировочными элементами, для которых твёрдые примеси крайне нежелательны, так как могут дестабилизировать работу клапанных устройств. Значит, разумнее будет дополнить свою смесительную схему еще и индивидуальным фильтром.

  • Поз. 3 – термометры. Эти приборы помогают осуществлять визуальный контроль за работой смесительного узла, что особо важно при отладке и балансировке системы «теплого пола». На всех последующих схемах будет показано по три термометра – на трубе подачи из общего контура (поз. 3.1), на входе в коллектор, то есть показывающий температуру потока после смешения (поз. 3.2), и на «обратке» после коллектора, до ответвления от нее на смесительный узел (поз. 3.3). Это, наверное, оптимальное расположение, наглядно показывающее и качество смешивания, и степень теплоотдачи «теплого пола». В идеале разница показаний на подающей и обратной гребенке коллектора не должна быть выше 5÷10 градусов. Впрочем, некоторые мастера обходятся и меньшим количеством термометров.

Исполнение термометров может быть разным. Кому-то больше по душе накладные модели, не требующие врезки в систему (на иллюстрации – слева). Но большей точностью показаний, да и просто своей надежностью, все же обладают приборы с датчиком-зондом, который вкручивается в соответствующее гнездо тройника.

  • Поз. 4 – двухходовый термоклапан. Это точно такой же элемент, как устанавливается на радиаторах отопления. Именно он и будет в данной схеме количественно регулировать поток поступающего в систему «теплого пола» горячего теплоносителя.

Здесь есть один нюанс – подобные термоклапаны различаются предназначением - для однотрубных или двухтрубных систем отопления. Но это различие важно при установке их именно на отдельный радиатор. А вот для смесительного узла, который обслуживает несколько контуров «теплого пола», важна повышенная производительность. Это значит, что выбирать следует клапан для однотрубных систем, даже если вся система организована по двухтрубному принципу. Эти клапаны даже визуально - более объёмные по своим габаритам, они обычно маркируются литером «G» и выделяются серым защитным колпачком.

  • Поз. 5 – термоголовка с выносным накладным датчиком (поз. 6). Этот прибор надевается (накручивается или закрепляется с помощью специального адаптера) на термоклапан и непосредственно управляет его работой. В зависимости от показаний температуры на выносном датчике, который связан с головкой капиллярной трубкой, клапан будет менять положение, приоткрывая или полностью закупоривая проход для горячего теплоносителя.

Цены на термоголовку

Термоголовка

Сразу вопрос – а где установить термодатчик? Есть два варианта – он может быть наложен на трубу подачи в коллектор, после смесительного узла, за насосом, либо – на трубу обратки коллектора, до ее разветвления на смешение. Существуют приверженцы и того, и другого метода.

— В первом случае – обеспечивается постоянная температура подачи теплоносителя в контуры теплого пола. Обеспечивается стабильность работы, сводится практически к нулю вероятность перегрева пола. Но, вместе с тем, система, если она дополнительно не оснащена термостатическими элементами непосредственно на контурах, перестает реагировать на изменение внешних условий. То есть изменение температуры в помещении никак не отразится на уровне нагрева подаваемого в «теплый пол» теплоносителя.

Возможно, вас заинтересует информация о том, своими руками

— Во втором случае, при термодатчике на обратке, обеспечивается стабильность температуры именно на этом участке. То есть уровень нагрева теплоносителя, уходящего в коллектор после смесительного узла, может колебаться. Хороша подобная схема тем, что система откликается, например, на похолодание, автоматически поднимая температуру в подаче, и снижая ее при потеплении. Удобно, но есть определенные риски. Так, при первоначальном прогреве стяжки пола в контуры изначально может пойти слишком горячий теплоноситель. Аналогичная ситуация вполне вероятна и при резком притоке холода, например, при настежь открытых окнах в случае экстренного проветривании помещения.

Сменить положение накладного термодатчика – не столь сложно, если заранее предусмотреть места для его установки. Так что можно опробовать оба варианта, выбрав затем оптимальный.

Про устройство термоклапана и термостатической головки рассказываться не будет – на эту тему есть отдельная публикация.

Как устроена система термостатической регуляции радиаторов отопления?

Установка дополнительных приборов позволяет обеспечить постоянные комфортные условия в помещении, независимо от изменения внешних условий. Назначение, устройство, установка и работа – в специальной статье нашего портала.

  • Поз. 7 – обычные сантехнические тройники, между которыми прокладывается своеобразный байпас – перемычка, по которой и будет отбираться теплоноситель из «обратки» для смешивания с горячим потоком. По сути, тройник 7.1 и становится зоной основного смешения.
  • Поз. 8 – балансировочный клапан. Он используется при точной настройке системы, с тем, чтобы добиться оптимальных показаний работы циркуляционного насоса по напору и производительности. Бывает необходимо снизить (или, как часто говорят сантехники, «придушить») поток через перемычку из обратки, чтобы в различных зонах смесительного узла и коллектора не создавалось ненужных областей излишнего разрежения или повышенного давления, а сам насос – работал бы в оптимальном режиме.

Никаких хитростей в этом устройстве нет – по сути, это обычный вентиль ограничивавший поток. Здесь можно поставить и обыкновенный сантехнический вентиль. Показанный на иллюстрации блок-кран выгодней с тех позиций, что он компактен, а также оттого, что выполненные ключом-шестигранником настройки никто не сможет случайно сбить, например, дети, желающие просто из любопытства покрутить маховик. Так что лучше, настроив систему, закрыть регулировочный узел крышкой – и быть относительно спокойным.

  • Поз. 9 – циркуляционный насос. Тот насос, который обслуживаешь всю систему отопления в целом, никак не сможет обеспечить циркуляцию по длинным контурам «теплого пола», особенно, если их к коллектору подсоединено несколько штук. Так что каждый смесительный узел оснащают собственным прибором.

Настройка системы теплых полов будет проще, если циркуляционный насос будет иметь несколько переключаемых режимов работы.

Цены на циркуляционный насос

циркуляционный насос

Как правильно выбрать циркуляционный насос?

Разнообразие моделей в настоящее время – чрезвычайно велико, что может даже поставить в тупик неопытного потребителя. Подробнее об устройстве и , о правилах их выбора и установки – в специальной публикации нашего портала.

  • Поз. 10 – обратный клапан. Очень нехитрое и недорогое сантехническое приспособление, предотвращающее несанкционированное протекание теплоносителя в обратном направлении

Может показаться. Что особой необходимости в его установке и нет. Тем не менее, такая страховка может оказаться нелишней. Например, ситуация, когда термоклапан, из-за достаточной температуры на коллекторе, полностью закрыт. Циркуляционный насос работает, и в принципе способен подсасывать теплоноситель из общей трубы «обратки» системы. А там температуры – совсем иные, намного выше, чем даже на подаче «теплого пола». То есть такой обратный ток может здорово дезориентировать работу смесительного узла.

С элементами и из взаимным расположением – всё. Посмотрим, как работает такой узел.

Поток теплоносителя из общей трубы подачи минует «косой» фильтр и термометр, доходит до термостатического клапана. Здесь он снижается, за счет уменьшения просвета канала свободного прохода жидкости. Термоголовка чутко следит за динамикой изменения температуры, приоткрывая или закрывая клапанное устройство.

Циркуляционный насос, работящий в контуре «теплого пола» оставляет за собой зону разрежения, которая «затягивает» регулируемый поток горячего теплоносителя. Но так как при этом производительность насоса не изменяется, то «недостача» компенсируется поступлением охлаждённого теплоносителя из линии обратки, идущей от коллектора, через байпас-перемычку.

Возможно, вас заинтересует информация о том, как оборудуется

В точке соединения потоков (в верхнем тройнике) начинается их смешение, и насос перекачивает уже доведенный до нужной температуры теплоноситель. Если температура на датчике термоголовки достаточна или избыточна, то термоклапан вообще будет перекрыт, и насос начнет гонять воду только по контурам «теплого пола», без подпитки извне, до ее остывания. Как только температура опустится ниже установленного значения, термоклапан приоткроет проход горячему теплоносителю, для достижения после точки смешения необходимого значения.

При стабильной работе системы, выведенной на расчетную мощность, поступление горячего теплоносителя из общей подачи обычно не столь велико. Клапан по большей части находится в приоткрытом состоянии, но очень чутко при этом реагируя на изменение внешних условий, обеспечивая стабильность температуры в контурах «теплого пола».

Подобный принцип, при котором весь перекачанный циркуляционным насосом объем теплоносителя направляется в коллектор «теплого пола», называется смесительным узлом с последовательным подключением насоса.

Схема 2 – с трехходовым термоклапаном и последовательным подсоединением циркуляционного насоса

Эта схема очень похожа на предыдущую, тем не менее, есть у нее и свои отличия.

Главное отличие – использование не двухходового, а трехходового термоклапана (поз. 11) с той же термостатической головкой. Он занял место тройника в точке пересечения линии подачи и трубы байпаса-перемычки.

Смешение в данном случае проходит непосредственно в корпусе термоклапана. Он устроен таким обозом, что при прикрытии одного канала поступления теплоносителя одновременно приоткрывается второй, что обеспечивает большую стабильность работы узла смешения – суммарный расход всегда выдерживается на одно уровне. Это дает возможность обойтись и без балансировочного клапана на байпасе.

Важно – трехходовые термоклапаны бывают смесительного и разделительного принципа действия. В данном случае необходим именно смесильного, с перпендикулярными направлениями подачи потоков. Обычно соответствующие стрелки вынесены на корпус прибора, и ошибиться с этим трудно.

Трёхходовой клапан может быть и без термоголовки – с собственным встроенным температурным датчиком и шкалой выставления необходимой температуры на выходе. Некоторые мастера предпочитают именно такую, термостатическую разновидность, как более простую в установке. Правда, устройство с выносным датчиком работает все же точнее. Кроме того, при эксплуатации системы с термостатическим трехходовым клапаном выше вероятность несанкционированного прохождения теплоносителя высокой температуры на коллектор.

Разделительные трехходовые клапаны, кстати, тоже могут использоваться в подобной схеме. Только место их установки – на противоположной стороне байпаса, и они уже регулируют разделение и перенаправление потока охлажденного теплоносителя к точке смешения, в сторону насоса.

Узел смешения с трехходовым клапаном, в связи с большой стабильной производительностью, больше подходит для крупных коллекторных развязок с несколькими контурами различной протяжённости. Применяют их и в случае использования погодозависимой автоматики, которая нередко предполагает еще и автоматизированное управление работой циркуляционного насоса. Для небольших систем она себя не оправдывает, как более сложная в регулировке.

На схеме под знаком вопроса показан обратный клапан (поз. 10.1). В принципе, он оправдан в том случае, если по тем или иным причинам не работает циркуляционный насос узла, например, автоматика дала команду на прекращение циркуляции. В таких ситуациях перемычка от обратки к трехходовому клапану может превратиться в совершенно неуправляемый байпас, который нарушит балансировку системы и скажется на работе других отопительных приборов в доме. Обратный клапан способен предотвратить это явление. Впрочем, многие опытные мастера ставят под сомнение вероятность возникновения подобных ситуаций, и считают клапан на этом участке – совершенно излишним и даже вредным, как оказывающим ненужное гидравлическое сопротивление.

Цены на трехходовый клапан

трехходовый клапан

Схема 3 – с трехходовым термостатическим клапаном, работающим со сходящимися потоками, и последовательным подсоединением циркуляционного насоса

В продаже можно отыскать термостатические клапаны, которые организованы по принципу смешения двух сходящихся по одной оси потоков. С ними схема сборки насосно-смесительного узла может принять такой вид:

Отличить подобные термостатические краны – несложно, по их характерной форме и нанесенным схемам (пиктограммам) направления потоков.

Показанная выше схема хороша уже своей компактностью. Байпас, как таковой, вообще отсутствует, так как его роль полностью выполняем сам смесительный клапан. В остальном – это все та же схема с принципом последовательного подключения циркуляционного насоса.

Схема 4 – с двухходовым термоклапаном и параллельным подсоединением циркуляционного насоса

А вот такая схема уже значительно отличается ото всех, показанных выше:

Подобный принцип строения узла предполагает так называемое параллельное подключение насоса, буквально на байпасе. Но к верхней точке этого байпаса подходят два встречающихся потока – от подачи общей системы и от обратки коллектора. На подаче установлен двухходовой термоклапан с термоголовкой и выносным датчиком – все так же, как и в первой схеме. Обеспечивающий циркуляцию через перемычку насос забирает оба сходящихся потока, и их смешивание происходит в тройнике сверху (выделено овалом и стрелкой) и в самом насосе. А вот дальше, в нижней точке перемычки на тройнике происходит разделение потока. Часть теплоносителя с уже выровненной до необходимого уровня температурой отправляется на подающий коллектор «теплого пола», а избыточное количество – сбрасывается в общую «обратку» системы отопления.

Подобная схема привлекает, прежде всего, своей компактностью. В условиях ограниченности места под установку смесительного узла – это одно из приемлемых решений. Однако, недостатков у нее немало. Прежде всего, очевидно, что производительностью она явно уступает узлам с последовательным подключением насоса. Получается, что определенный объем теплоносителя после смешения и доведения до требуемой температуры, перекачивается насосом впустую – он не участвует в работе контуров теплого пола и просто уходит в «обратку».

Кроме того, подобная система отличается немалой сложностью в проведении балансировки, и часто требует установки дополнительных балансировочных и (или) перепускных клапанов.

Интересно, что многие готовые смесительные узлы заводской сборки организованы именно по параллельной схеме – скорее всего, из соображений максимальной компактности. И народные умельцы придумывают способы их переделки под более «послушную» схему - с последовательным насосом.

Теплые полы рехау (rehau) являются одним из лидеров среди аналогичных обогревательных систем. Если правильно выбрать и установить подходящий вариант, можно обеспечить комфортабельную атмосферу в комнатах и долгое время не задумываться об отоплении в помещении.

Дополнительное оборудование для теплых полов Рехау

теплый пол сделает кухню уютнее

В комплекте к основным материалам для установки теплого пола прилагаются дополнительные элементы, которые применяются при монтаже конструкции.

Шины RAUFIX

Монтаж теплого пола:

Уход и правила эксплуатации

Уход за теплым полом не слишком трудоемкий, но так как вся система находится в глубине.

После правильной укладки теплого пола и монтажа напольного покрытия необходимо выждать некоторое время, а затем можно спокойно ходить по полу, устанавливать на него даже довольно тяжелые бытовые элементы, так как системы Рехау отличаются надежностью и высоким показателем твердости. Про материалы для теплых водяных полов можно прочитать .

Выбирайте правильное половое покрытие

Следует избегать возможности нанесения повреждений конструкции отопительной системы, аккуратно эксплуатировать отдельно стоящие элементы, такие как регулировочные установки и другое важное оборудование. По возможности нужно исключить доступ детей к устройствам, служащим для контроля и управления подачи воды и ее нагрева, чтобы избежать резких скачков температур.

При необходимости следует предпринимать обслуживание и своевременный ремонт конструкции. Обычно эти действия осуществляет компетентный мастер. Уход за теплыми полами Рехау не представляет важности. Следует поддерживать чистоту и надлежащий внешний вид напольного покрытия. Вся система заглублена в пол, поэтому самым важным действием, требующимся от пользователей, является проявление аккуратности при эксплуатации. Также рекомендуем ознакомиться с технологией монтажа, укладки и установки теплого водяного пола .

За и против теплых полов смотрите видео:

Является одним из лидеров на рынке аналогичных систем, так как отличается не только выдающимися эксплуатационными характеристиками и удобством в использовании, но и является довольно экономичным, так как не оставляет отходов при монтаже и практически не требует ремонта. Если установить его правильно, можно долго пользоваться комфортным и надежным отоплением.

Насосно-смесительный узел VALTEC COMBIMIX (VT.COMBI) предназначен для поддержания заданной температуры теплоносителя во вторичном контуре (за счет подмешивания из обратной линии). При помощи этого узла также можно гидравлически увязать существующую высокотемпературную систему отопления и низкотемпературный контур теплого пола. Помимо основных органов регулирования узел также включает в себя весь необходимый набор сервисных элементов: воздухоотводчик и сливной клапан, которые упрощают обслуживание системы в целом. Термометры позволяют легко следить за работой узла без использования дополнительных приборов и инструментов.


К узлу VALTEC COMBIMIX допустимо подключать неограниченное количество веток тёплого пола суммарной мощностью не более 20 кВт. При подключении нескольких веток тёплого пола к узлу рекомендуется использовать коллекторные блоки VALTEC VTc.594 или VTc.596.

Основные органы регулировки насосно-смесительного узла:

1. Балансировочный клапан вторичного контура (позиция 2 на схеме).

Этот клапан обеспечивает смешение теплоносителя из обратного коллектора тёплого пола с теплоносителем из подающего трубопровода в пропорции, необходимой для поддержания заданной температуры теплоносителя на выходе из узла COMBIMIX.

Изменение настройки клапана осуществляется шестигранным ключом, для предотвращения случайного поворота во время эксплуатации клапан фиксируется зажимным винтом. На клапане имеется шкала со значениями пропускной способности Kv τ клапана от 0 до 5 м 3 /ч.

Примечание: Пропускная способность клапана хоть и измеряется в м 3 /ч, но не является фактическим расходом теплоносителя, проходящим через этот клапан.

2. Балансировочно-запорный клапан первичного контура (поз. 8 )

При помощи данного клапана настраивается требуемое количество теплоносителя, которое будет поступать из первичного контура в узел (балансировка узла). К тому же клапан можно использовать как запорный для полного перекрытия потока. Клапан имеет регулировочный винт, при помощи которого можно задавать пропускную способность клапана. Открытие и закрытие клапана осуществляется шестигранным ключом. Клапан имеет защитный шестигранный колпачок.

3. Перепускной клапан (поз. 7 )

Во время работы системы отопления может возникнуть режим, когда все регулирующие клапаны тёплого пола закрыты. В этом случае насос будет работать в заглушенную систему (без расхода теплоносителя) и быстро выйдет из строя. Для того чтобы избежать подобных режимов, на узле стоит перепускной клапан, который при полном перекрытии клапанов системы тёплого пола открывает дополнительный байпас и позволяет насосу циркулировать воду по малому контуру в холостую без потери работоспособности.


Клапан срабатывает на перепад давления, создаваемый насосом. Перепад давления, при котором клапан откроется, задаётся поворотом регулятора. Сбоку клапана есть шкала с диапазоном значений 0,2-0,6 бара. Наосы, которые рекомендуется использовать совместно с COMBIMIX, имеют максимальное давление от 0,22 до 0,6 бара.

После того как система отопления полностью собрана, опрессована пробным давлением и заполнена водой, её следует настроить. Настройка узла регулирования проводится совместно с пусконаладкой всей системы отопления. Лучше всего производить наладку узла перед началом балансировки системы.

Алгоритм настройки узла регулирования:

1. Снять термоголовку (1 ) или сервопривод.

Для того чтобы привод регулирующего клапана не влиял на узел во время настройки, его следует снять.

2. Выставить перепускной клапан в максимальное положение (0,6 бара).

Если перепускной клапан сработает во время настройки узла, то настройка будет некорректной. Поэтому его следует выставить в положение, при котором он не сработает.

3. Настроить положение балансировочного клапана вторичного контура (поз. 2 на схеме).

Требуемую пропускную способность балансировочного клапана можно рассчитать, самостоятельно используя несложную формулу:

t 1 - температура теплоносителя на подающем трубопроводе первичного контура;

t 11 - температура теплоносителя на подающем трубопроводе вторичного контура;

t 12 - температура теплоносителя на обратном трубопроводе (У обоих контуров совпадает);

Kv τ - коэффициент пропускной способности регулирующего клапана, для COMBIMIX принимается 0,9.

Полученное значение Kv выставляем на клапане.


Пример расчета

Исходные данные: расчётная температура подающего теплоносителя - 90 °С; расчётные параметры контура тёплого пола 45 - 35 °С.

Полученное значение Kv выставляем на клапане.

4. Настроить насос на требуемую скорость.

G 2 = 3600 · Q / c · (t 11 - t 12), кг/ч;

ΔP н = ΔP с + 1, м вод. ст.,

где Q - сумма тепловой мощности всех петель, подключённых к COMBIMIX; с - теплоёмкость теплоносителя (для воды - 4,2 кДж/кг·°С; если используется иной теплоноситель, значение следует взять из техпаспорта этой жидкости); t 11 , t 12 - температура теплоносителя на подающем и на обратном трубопроводе контура после узла COMBIMIX. ΔP с - потери давления в расчетном контуре теплого пола (включая коллекторы). Данную величину можно получить, выполнив гидравлический расчёт тёплого пола. Для этого можно использовать расчётную программу VALTEC.PRG .

На номограммах насосов, представленных ниже, определяем скорость насоса. Для определения скорости насоса на характеристике отмечается точка с соответствующим напором и расходом. Далее определяется ближайшая кривая выше данной точке, она и будет соответствовать требуемой скорости.

Пример

Исходные условия: теплый пола с суммарной мощностью 10 кВт, потерями давления в самой нагруженной петле 15 кПа (1,53 м вод. ст).

Расход воды во вторичном контуре:

G 2 = 3600 · Q / c · (t 11 - t 12 ) = 3600 · 10 / 4,2 · (45 - 35) = 857 кг/ч (0,86 м 3 /ч).

Потери давления в контурах после узла COMBIMIX с запасом 1 м вод. ст.:

Δ P н = Δ P с + 1 = 1,53 + 1 = 2,53 м вод. ст.

Выбрана скорость насоса - MED по точке (0,86 м 3 /ч; 4,05 м вод. ст.):

Если нет возможности рассчитать насос, то данный этап можно пропустить и сразу приступить к следующему. Насос при этом выставить в минимальное положение. Если в процессе балансировки выяснится, что давления насоса не хватает, нужно переключить насос на более высшую скорость.

5. Балансировка веток теплого пола.

Закрываем балансировочно-запорный клапан первичного контура. Для этого откидываем крышку клапана и шестигранным ключом поворачиваем клапан против часовой стрелки до упора.

Задача балансировки веток тёплого пола сводится к созданию в каждой ветке требуемого расхода теплоносителя и как следствие равномерного прогрева.

Ветки между собой балансируются балансировочными клапанами или регуляторами расхода (в комплект COMBIMIX не входят, регуляторы расхода включает в себя коллекторный блок VTc.596.EMNX). Если после COMBIMIX только один контур, то ничего увязывать не нужно.

Ход балансировки следующий: балансировочные клапаны/регуляторы расходов на всех ветках тёплого пола открываются на максимум, далее выбирается ветка, у которой отклонение фактического расхода от проектного максимально. Клапан на этой ветке закрывается до нужного расхода. Таким образом, надо отрегулировать все ветки тёплого пола.

Пример

Для начала определим требуемый расход теплоносителя в первичном контуре. Для этого можно использовать следующую формулу:

G 2 = 3600 · Q / c · (t 1 - t 2 ),

где Q - сумма тепловой мощности всех приборов, подключённых после COMBIMIX; с - теплоёмкость теплоносителя (для воды - 4,2 кДж/кг·°С; если используется иной теплоноситель, значение следует взять из техпаспорта этой жидкости); t 1 , t 2 - температура теплоносителя на подающем и обратном трубопроводе первичного контура (температуры теплоносителя в обратном трубопроводе первичного и вторичного трубопровода совпадают).

Для тёплого пола с суммарной мощностью 10 кВт с расчётной температурой подающего теплоносителя 90 °С, расчетными параметрами контура тёплого пола 45-35 °С расход теплоносителя в первичном контуре будет следующим:

G 2 = 3600 · Q / c · (t 1 - t 2 ) = 3600 · 10 / 4,2 · (90 - 35) = 155,8 кг/ч.

При расчёте проектировщик определил, что потеря давления на балансировочном клапане узла должна составлять 9 кПа (0,09 бара), для того чтобы расход теплоносителя в первичном контуре составил 0,159 м 3 /ч, k v клапана должно быть:

k v = 0,159 /√0,09 = 0,53 м 3 /ч.

Для определения количества оборотов можно не считать kv а воспользоваться номограммой приведённой ниже. Для этого надо отложить на графике требуемый расход через первичный контур и требуемую потерю давления на клапане. Ближайшая наклонная линия будет соответствовать требуемой настройке (количеству оборотов). Для повышения точности можно интерполировать полученные значения.

В первой строке таблицы указана позиция, во второй строке таблицы указано количество оборотов регулировочного винта. (В данном примере 2 и ¼.) В третьей строке указан Kv для данной настройки, как видно оно практически совпадает с расчётным.

Выставление оборотов на клапане:

Правильная настройка клапана должна идти от положения полного закрытия клапана, при помощи тонкой отвёртки с плоским шлицем закручиваем регулировочный винт до упора и ставим метку на клапане и на отвёртке.

По таблице настройки клапана, поворачиваем винт на требуемое количество оборотов. Для фиксации оборотов использовать метки на клапане и отвёртке. (по примеру необходимо сделать 2 и ¼ оборота).

При помощи шестигранного ключа открыть клапан до упора. Клапан откроется ровно настолько, насколько сколько вы сделали оборотов отвёрткой. После настройки клапан при помощи шестигранного ключа можно открывать и закрывать, настройка пропускной способности при этом сохраниться.

Таким же образом производится расчёт всех остальных балансировочных клапанов системы отопления. Количество оборотов клапанов (или настроечная позиция определяются по методикам производителей балансировочной арматуры).


Второй способ балансировки системы заключается в том, что настройки всех клапанов выставляются «по месту». При этом настроечные значения определяются исходя из реально замеренных расходов теплоносителя по отельным веткам или системам.

Данный способ используют, как правило, при настройке больших или ответственных систем отопления. Во время балансировки используются специальные приборы - расходомеры, при помощи которых можно замерять расход по отдельным направлениям, не вскрывая трубопровод. Также часто используются балансировочные клапаны со штуцерами и специальные манометры для замера перепада давления, по которому также можно определить расход на отдельных участках. Недостаток данного метода заключается в том, что приборы, предназначенные для замеров расхода слишком дороги для разового или нечастого использования. Для маленьких систем стоимость приборов может превышать стоимость самой системы отопления.

Пори балансировке данным методом COMBIMIX настраивается следующим образом:

Зафиксировать расходомер на трубопроводе, через который COMBIMIX подключён к системе отопления. Откалибровать и настроить расходомер согласно инструкции на расходомер.

После плавно приоткрывать балансировочный клапан при помощи шестигранного ключа, фиксируя при этом изменение расхода теплоносителя. Как только расход теплоносителя будет соответствовать проекту зафиксировать положение клапана при помощи настроечного винта.

Пример

Как и для предыдущего примера сначала рассчитывается расход теплоносителя.

Для тёплого пола с суммарной мощностью 10 кВт, расчётной температурой подающего теплоносителя 90 °С, расчётными параметрами контура тёплого пола 45-35 °С расход теплоносителя в первичном контуре будет следующим:

G 2 = 3600 · Q /c · (t 1 - t 2) = 3600 · 10 / 4,2 · (90 - 35) = 155,8 кг/ч (0,159 м 3 /ч).

Закрыть полностью балансировочный клапан при помощи шестигранника:

Плавно открывать клапан при помощи шестигранника при этом фиксировать расход на расходомере до тех пор, пока расход достигнет проектного (в примере 0,159 м 3 /ч).

После того, как расход теплоносителя установится, - зафиксировать положение запорного клапана при помощи регулировочного винта (закрутить по часовой стрелке регулировочный винт до упора).

После того, как регулировочный винт зафиксирован клапан можно открывать и закрывать при помощи шестигранника, настройка при этом не собьётся.


Для маленьких систем при отсутствии проекта и сложных приборов измерения допустим следующий способ балансировки:

В готовой системе включают котёл и центральный насос (или другой источник теплоснабжения), далее закрывают все балансировочные краны на всех отопительных приборах или ветках. После этого определяется отопительный прибор, который установлен дальше всего от котла (источника теплоснабжения). Балансировочный клапан в этом приборе открывается полностью, после того, как прибор полностью прогреется необходимо замерить перепад температур теплоносителя до и после прибора. Условно можно принять, что температура теплоносителя равна температуре трубопровода. После переходим к следующему отопительному прибору и плавно открываем балансировочный клапан пока перепад температур прямого и обратного трубопровода не будет совпадать с первым прибором. Данную операцию повторить со всеми отопительными приборами. Когда очередь дойдёт до узла COMBIMIX, то его наладку следует проводить следующим образом: Если температура теплоносителя в подающем трубопроводе равна проектной то следует плавно открывать балансировочный клапан первичного контура до тех пор, пока показания на термометрах подающего и обратного трубопроводах вторичного контура не станут равны проектным ±5 °С.

Если температура теплоносителя в подающем трубопроводе во время наладки системы отличается от проектной, то можно использовать следующую формулу для пересчёта:

где температуры с индексом «П» - проектные, а температуры с индексом «Н» - настроечные (используемые для настройки) значения.


Пример

Рассмотрим следующую систему отопления:

Для начала закрываются все балансировочные клапаны.

Выбирается отопительный прибор, который находится дальше всего от котла. В данном случае это самый правый радиатор. Балансировочный клапан у радиатора открывается полностью. После прогрева радиатора фиксируется температура прямого и обратного трубопровода.

По примеру - после открытия клапана температура на подающем трубопроводе установилась 70 °С, температура на обратном трубопроводе установилась 55 °С.

После берётся второй прибор по удалённости от котла. Балансировочный клапан на этом приборе открывается до тех пор пока температура на обратном трубопроводе не будет равна температуре первого ±5 °С.

Настройка COMBIMIX: расчётная температура подающего теплоносителя - 90 °С; расчётные параметры контура тёплого пола - 45-35 °С. Фактические показания, снимаемые с термометров: температура подающего теплоносителя - 70 °С.

По формуле определяем температуру теплоносителя в подающем трубопроводе вторичного контура:

Определяем температуру теплоносителя в обратном трубопроводе вторичного контура:

Открываем балансировочный клапан вторичного контура до тех пор, пока температуры на термометрах COMBIMIX не совпадут с расчётными ± 5°С.

Зафиксировать положение запорного клапана при помощи регулировочного винта (закрутить по часовой стрелке регулировочный винт до упора).


После того, как регулировочный винт зафиксирован клапан можно открывать и закрывать при помощи шестигранника, настройка при этом не собьётся.

Настройка перепускного клапана

Настроить перепускной клапан можно двумя способами:

  1. Если известно сопротивление самой нагруженной ветки тёплого пола, то это значение следует выставить на перепускном клапане.

2. Если потеря давления на самой нагруженной ветке неизвестна, то можно определить уставку перепускного клапана по характеристике насоса.

Значение давления клапана выставляется на 5- 10 % меньше, чем максимальное давление насоса при выбранной скорости. Максимальное давление насоса определяется по характеристике насоса.

Перепускной клапан должен открываться при приближении работы насоса к критической точке, когда отсутствует расход воды и насос работает только на нагнетание давления. Давление в данном режиме можно определить по характеристике.

Пример определения настроечного значения перепускного клапана.


В данном примере видно, что насос в случае отсутствия движения воды на первой скорости имеет давление 3,05 м вод. ст. (0,3 бара), точка 1 ; на средней скорости - 4,5 м вод. ст. (0,44 бара), точка 2 ; и на максимальной 5,5 м вод. ст. (0,54 бара), точка 3 .

Так как насос выставлен на среднюю скорость, выбираем уставку на перепускном клапане 0,44 - 5 % = 0,42 бара.

6. Завершающий этап

После настройки всех органов узла COMBIMIX следует одеть обратно термоголовку регулирующего клапана, убедиться в работоспособности регулирующего клапана. Закрыть крышку балансировочного клапана первичного контура. Узел готов к эксплуатации.

Наладка систем отопления является одной из самых сложных инженерных задач. Насосно-смесительный узел VALTEC COMBIMIX позволяет упростить данную задачу. Данный узел это уже готовое комплексное решение организации контура тёплого пола в системах отопления. Продуманная комплектация узла позволяет исключить ошибки при конструировании той или иной системы. Гибкость настройки узла позволяет производить наладку систем тёплого пола без использования специальных приспособлений.

Описание комплекта температурного регулирования Rehau с постоянными параметрами G1 (1")

Комплект температурного регулирования Rehau с постоянными параметрами G1 (1") ErP подходит для монтажа на коллекторе Rehau НКV-D . Предназначен для подключения контуров напольного отопления к системе радиаторного отопления.

Включает в себя:

    термостатический вентиль Rp 1/2 с термостатической головкой и погружным датчиком: диапазон регулировки 20-50 °C

    соединение r обратной линии R/Rp 1/2

    энергоэффективный насос с погружным датчиком для ограничения температуры

    присоединительный угольник с воздухоотводчиком и термометром

    кран KFE 1/2" для заполнения и слива системы

    прилагаемые детали 1/2" для подключения к сети

Отдельные детали смонтированы с уплотнениями и испытаны.

В интернет-маркете Torus Вы можете купить комплект температурного регулирования Rehau с постоянными параметрами 1" с доставкой в любую точку Украины и получить официальную гарантию от производителя.

Доставка по Киеву

Доставка товаров по Киеву осуществляется бесплатно (до подъезда) при заказе на сумму более 4000 грн. Если сумма заказа составляет менее 4000 грн - стоимость доставки составляет 80 грн.

Служба доставки товаров по Киеву работает с понеделька по пятницу с 10:00 до 19:00, другое время доставки оговаривается индивидуально с Вашим менеджером.

Покупатели нашего интернет-маркета также имеют возможность забрать самостоятельно товар в офисе компании (04073, г. Киев, ул. Сырецкая, 9, БЦ "МАЯК", оф. 203) с понеделька по пятницу с 10:00 до 18:00.

Просим учесть, что весь ассортимент товаров разместить в офисе мы, к сожалению, не можем, пожалуйста, согласовывайте свой визит и предварительно резервируйте товар у менеджера.

Доставка по Украине
Доставка товаров осуществляется практически в любую точку Украины транспортной компанией "Новая почта" (Список и адреса отделений Вы можете посмотреть здесь...). Отправка товара производится после оплаты его полной стоимости.

Для оперативности доставки и удобства оплаты в нашем интернет-маркете Torus, Вы можете воспользоватся услугой "Обратная доставка" (Наложенный платеж) и оплатить товар при его получении в Вашем населенном пункте в максимально сжатые сроки. При получении заказа Вы сможете проверить внешний вид и комплектацию товара.

Стоимость доставки по Украине оплачивает получатель. (Просчитать предварительную стоимость доставки можете →)

Наличный расчет

Производится только в национальной валюте . Вы можете осуществить оплату непосредственно после доставки нашим экспедитором заказанного товара или же произвести платеж при оформлении заказа в нашем офисе.

Безналичный расчет

Оплата по безналичному расчету осуществляется следующим способом: после оформления заказа, менеджер нашей компании факсом или электронной почтой вышлет Вам счет-фактуру, который Вы сможете оплатить в кассе отделения любого банка или с расчетного счета Вашей организации. Для юридических лиц пакет всех необходимых документов предоставляется вместе с товаром.

Оплата товара при получении заказа (наложенный платеж)

Для Вашего удобства в интернет-маркете Torus, Вы можете воспользоватся услугой "Обратная доставка" (Наложенный платеж) и оплатить товар при его получении в Вашем населенном пункте в максимально короткие сроки. При получении заказа Вы сможете проверить внешний вид и комплектацию товара.

Стоимость услуги "Обратная доставка" составляет 2% от суммы заказа.