Продольные и поперечные деформации. Продольная и поперечная деформация Продольная деформация закон гука
9. Абсолютная и относительная деформация при растяжении (сжатии). Коэффициент Пуассона.
Если под действием силы брус длиной изменил свою продольную величину на , то эта величина называется абсолютной продольной деформацией (абсолютное удлинение или укорочение). При этом наблюдается и поперечная абсолютная деформация .
Отношение называется относительной продольной деформацией, а отношение - относительной поперечной деформацией.
Отношение называется коэффициентом Пуассона, который характеризует упругие свойства материала.
Коэффициент Пуассона имеет значение . (для стали он равен )
10. Сформулировать закон Гука при растяжении (сжатии).
I форма. В поперечных сечениях бруса при центральном растяжении (сжатии) нормальные напряжения равны отношению продольной силы к площади поперечного сечения:
II форма. Относительная продольная деформация прямо пропорциональна нормальному напряжению , откуда .
11. Как определяются напряжения в поперечных и наклонных сечениях бруса?
– сила, равная произведению напряжения на площадь наклонного сечения :
12. По какой формуле можно определить абсолютное удлинение (укорочение) бруса?
Абсолютное удлинение (укорочение) бруса (стержня) выражается формулой:
, т.е.
Учитывая, что величина представляет собой жесткость поперечного сечения бруса длиной можно сделать вывод: абсолютная продольная деформация прямо пропорциональна продольной силе и обратно пропорциональна жесткости поперечного сечения. Этот закон впервые сформулировал Гук в 1660 году.
13. Как определяются температурные деформации и напряжения?
При повышении температуры у большинства материалов механические характеристики прочности уменьшаются, а при понижении температуры – увеличиваются. Например, у стали марки Ст3 при и ;
при и , т.е. .
Удлинение стержня при нагревании определяется по формуле , где - коэффициент линейного расширения материала стержня, - длина стержня.
Возникающее в поперечном сечении нормальное напряжение . При понижении температуры происходит укорочение стержня и возникают напряжения сжатия.
14. Дать характеристику диаграммы растяжения (сжатия).
Механические характеристики материалов определяются путем испытаний образцов и построением соответствующих графиков, диаграмм. Наиболее распространенным является статическое испытание на растяжение (сжатие).
Предел пропорциональности (до этого предела справедлив закон Гука);
Предел текучести материала;
Предел прочности материала;
Разрушающее (условное) напряжение;
Точка 5 соответствует истинному разрушающему напряжению.
1-2 площадка текучести материала;
2-3 зона упрочнения материала;
и - величина пластической и упругой деформации.
Модуль упругости при растяжении (сжатии), определяемый как: , т.е. .
15. Какие параметры характеризуют степень пластичности материала?
Степень пластичности материала может быть охарактеризовано величинами:
Остаточным относительным удлинением – как отношение остаточной деформации образца к первоначальной его длине:
где - длина образца после разрыва. Величина для различных марок стали находится в пределах от 8 до 28 %;
Остаточным относительным сужением – как отношение площади поперечного сечения образца в месте разрыва к первоначальной площади:
где - площадь поперечного сечения разорванного образца в наиболее тонком месте шейки. Величина находится в пределах от нескольких процентов для хрупкой высокоуглеродистой стали до 60 % для малоуглеродистой стали.
16. Задачи, решаемые при расчете на прочность при растяжении (сжатии).
Изменение размеров, объема и возможно формы тела, при внешнем воздействии на него, называют в физике деформацией. Тело деформируется при растяжении, сжатии или (и), при изменении его температуры.
Деформация появляется тогда, когда разные части тела совершают разные перемещения. Так, например, если резиновый шнур тянуть за концы, то разные его части сместятся относительно друг друга, и шнур окажется деформированным (растянется, удлинится). При деформации изменяются расстояния между атомами или молекулами тел, поэтому возникают силы упругости.
Пусть прямой брус, длиной и, имеющий постоянное сечение, закреплен одним концом. За другой конец его растягивают, прикладывая силу (рис.1). При этом тело удлиняется на величину , которую называют абсолютным удлинением (или абсолютной продольной деформацией).
В любой точке рассматриваемого тела имеется одинаковое напряженное состояние. Линейную деформацию () при растяжении и сжатии подобных объектов называют относительным удлинением (относительной продольной деформацией):
Относительная продольная деформация
Относительная продольная деформация - величина безразмерная. Как правило относительное удлинение много меньше единицы ().
Деформацию удлинения обычно считают положительной, а деформацию сжатия отрицательной.
Если напряжение в брусе не превышает некоторого предела, экспериментально установлена зависимость:
где - продольная сила в поперечных сечениях бруса; S - площадь поперечного сечения бруса; E - модуль упругости (модуль Юнга) - физическая величина, характеристика жёсткости материала. Принимая о внимание то, что нормальное напряжение в поперечном сечении ():
Абсолютное удлинение бруса можно выразить как:
Выражение (5) является математической записью закона Р. Гука, который отражает прямую зависимость между силой и деформацией при небольших нагрузках.
В следующей формулировке, закон Гука используется не только при рассмотрении растяжения (сжатия) бруса: Относительная продольная деформация прямо пропорциональна нормальному напряжению.
Относительная деформация при сдвиге
При сдвиге относительную деформацию характеризуют при помощи формулы:
где - относительный сдвиг; - абсолютный сдвиг слоев параллельных по отношению друг к другу; h — расстояние между слоями; - угол сдвига.
Закон Гука для сдвига записывают как:
где G - модуль сдвига, F - сила, вызывающая сдвиг, параллельная сдвигающимся слоям тела.
Примеры решения задач
ПРИМЕР 1
Задание | Каково относительное удлинение стального стержня, если его верхний конец закреплен неподвижно (рис.2)? Площадь поперечного сечения стержня . К нижнему концу стержня прикреплен груз массой кг. Считайте, что собственная масса стержня много меньше, чем масса груза.
|
Решение | Сила, которая заставляет стержень растягиваться, равна силе тяжести груза, который находится на нижнем конце стержня. Эта сила действует вдоль оси стержня. Относительное удлинение стержня найдем как:
где . Прежде чем проводить расчет, следует найти в справочниках модуль Юнга для стали. Па. |
Ответ |
ПРИМЕР 2
Задание | Нижнее основание металлического параллелепипеда с основанием в виде квадрата со стороной a и высотой h закреплено неподвижно. На верхнее основание параллельно основанию действует сила F (рис.3). Какова относительная деформация сдвига ()? Модуль сдвига (G) считайте известным. |
Пусть в результате деформации первоначальная длина стержня l станет равной. l 1. Изменение длины
называется абсолютным удлинением стержня.
Отношение абсолютного удлинения стержня к его первоначальной длине называется относительным удлинением (– эпсилон) или продольной деформацией. Продольная деформация – это безразмерная величина. Формула безразмерной деформации:
При растяжении продольная деформация считается положительной, а при сжатии – отрицательной.
Поперечные размеры стержня в результате деформирования также изменяются, при этом при растяжении они уменьшаются, а при сжатии – увеличиваются. Если материал является изотропным, то его поперечные деформации равны между собой:
Опытным путем установлено, что при растяжении (сжатии) в пределах упругих деформаций отношение поперечной деформации к продольной является постоянной для данного материала величиной. Модуль отношения поперечной деформации к продольной, называемый коэффициентом Пуассона или коэффициентом поперечной деформации, вычисляется по формуле:
Для различных материалов коэффициент Пуассона изменяется в пределах . Например, для пробки , для каучука , для стали , для золота .
Продольные и поперечные деформации. Коэффициент Пуассона. Закон Гука
При действии растягивающих сил по оси бруса длина его увеличивается, а поперечные размеры уменьшаются. При действии сжимающих усилий происходит обратное явление. На рис. 6 показан брус, растягиваемый двумя силами Р. В результате растяжения брус удлинился на величину Δl , которая называется абсолютным удлинением, и получим абсолютное поперечное сужение Δа.
Отношение величины абсолютного удлинения и укорочения к первоначальной длине или ширине бруса называется относительной деформацией . В данном случае относительная деформация называется продольной деформацией , а — относительной поперечной деформацией . Отношение относительной поперечной деформации к относительной продольной деформации называется коэффициентом Пуассона : (3.1)
Коэффициент Пуассона для каждого материала как упругая константа определяется опытным путем и находится в пределах: ; для стали .
В пределах упругих деформаций установлено, что нормальное напряжение прямо пропорционально относительной продольной деформации. Эта зависимость называется законом Гука:
, (3.2)
где Е — коэффициент пропорциональности, называемый модулем нормальной упругости .
Если мы в формулу закона Гука подставим выражение и , тo получим формулу для определения удлинения или укорочения при растяжении и сжатии:
, (3.3)
где произведение ЕF называется жесткостью при растяжении, сжатии.
Продольные и поперечные деформации. Закон Гука
Иметь представление о продольных и поперечных деформациях и их связи.
Знать закон Гука, зависимости и формулы для расчета напряжений и перемещений.
Уметь проводить расчеты на прочность и жесткость статически определимых брусьев при растяжении и сжатии.
Деформации при растяжении и сжатии
Рассмотрим деформацию бруса под действием продольной силы F (рис. 4.13).
Начальные размеры бруса: - начальная длина, - начальная ширина. Брус удлиняется на величину Δl; Δ1 - абсолютное удлинение. При растяжении поперечные размеры уменьшаются, Δ а - абсолютное сужение; Δ1 > 0; Δ а 0.
В сопротивлении материалов принято рассчитывать деформации в относительных единицах: рис.4.13
— относительное удлинение;
Относительное сужение.
Между продольной и поперечной деформациями существует зависимость ε′=με, где μ – коэффициент поперечной деформации, или коэффициент Пуассона, — характеристика пластичности материала.
Энциклопедия по машиностроению XXL
Оборудование, материаловедение, механика и.
Деформация продольная при растяжении (сжатии)
Экспериментально установлено, что отношение поперечной деформации ej. к продольной деформации е при растяжении (сжатии) до предела пропорциональности для данного материала - величина постоянная. Обозначив абсолютную величину данного отношения (X, получим
Опытами установлено, что относительная поперечная деформация ео при растяжении (сжатии) составляет некоторую часть продольной деформации е, т. е.
Отношение поперечной деформации к продольной при растяжении (сжатии), взятое ио абсолютной величине.
В предыдущих главах сопротивления материалов были рассмотрены простые виды деформации бруса - растяжение (сжатие), сдвиг, кручение, прямой изгиб, характерные тем, что в поперечных сечениях бруса возникает лишь один внутренний силовой фактор при растяжении (сжатии) - продольная сила, при сдвиге - поперечная сила, при кручении - крутящий момент, при чистом прямом изгибе - изгибающий момент в плоскости, проходящей через одну из главных центральных осей поперечного сечения бруса. При прямом поперечном изгибе возникает два внутренних силовых фактора- изгибающий момент и поперечная сила, но этот вид деформации бруса относят к простым, так как при расчетах на прочность совместное влияние указанных силовых факторов не учитывают.
При растяжении (сжатии) изменяются также и поперечные размеры. Отношение относительной поперечной деформации е к относительной продольной деформации е является физической константой материала и называется коэффициентом Пуассона V = е /е.
При растяжении (сжатии) бруса его продольные и поперечные размеры получают изменения, характеризуемые деформациями продольной прод (бг) и поперечной (е, е). которые связаны соотношением
Как показывает опыт, при растяжении (сжатии) бруса его объем несколько изменяется при увеличении длины бруса на величину Аг каждая сторона его сечения уменьшается на Будем называть относительной продольной деформацией величину
Продольные и поперечные упругие деформации, возникающие при растяжении или сжатии, связаны друг с другом зависимостью
Итак, рассмотрим брус из изотропного материала. Гипотеза плоских сечений устанавливает такую геометрию деформаций при растяжении сжатии, что все продольные волокна бруса имеют одинаковую деформацию х, независимо от их положения в поперечном сечении F, т.е.
Экспериментальное исследование объемных деформаций проводилось при растяжении и сжатии образцов стеклопластиков при одновременной регистрации на осциллографе К-12-21 изменения продольных, поперечных деформаций материала и усилия при нагружении (на испытательной машине ЦД-10). Испытание до достижения максимальной нагрузки проводилось практически при постоянных скоростях нагружения, что обеспечивалось специальным регулятором, которым снабжена машина.
Как показывают опыты, отношение поперечной деформации ь к продольной деформации е при растяжении или сжатии для данного материала в пределах применения закона Гука есть величина постоянная. Это отношение, взятое по абсолютной величине, называется коэффициентом поперечной деформации или коэффициентом Пуассона
Здесь /р(сж) - продольная деформация при растяжении (сжатии) /и - поперечная деформация при изгибе I - длина деформируемого бруса Р - площадь его поперечного сечения / - момент Инерции площади поперечного сечения образца относительно нейтральной оси - полярный момент инерции Р - приложенное усилие -момент кручения - коэффициент, учи-
Деформация стержня при растяжении или сжатии заключается в изменении его длины и поперечного сечения. Относительные продольная и поперечная деформации определяются соответственно по формулам
Отношение высоты боковых пластин (стенок бака) к ширине в аккумуляторах значительных габаритов, как правило, больше двух, что позволяет рассчитывать стенки бака по формулам цилиндрического изгиба пластин. Крышка бака не имеет жесткого скрепления со стенками и не может помешать их выпучиванию. Пренебрегая влиянием дна, можно свести расчет бака при действии на него горизонтальных усилий к расчету замкнутой статически неопределимой рамки-полоски, выделенной из бака двумя горизонтальными сечениями. Модуль нормальной упругости стеклопласта сравнительно мал, поэтому конструкции из этого материала чувствительны к продольному изгибу. Пределы прочности стеклопласта при растяжении, сжатии и изгибе различны. Сопоставление расчетных напряжений с предельными должно производиться для той деформации, которая является преобладающей.
Введем обозначения, используемые в алгоритме величины с индексами 1,1-1 относятся к текущей и предыдущей итерации на временном этапе т - Ат, т и 2 - соответственно скорость продольной (осевой) деформации при растяжении (i > > 0) и сжатии (2 деформации связаны соотношением
Зависимости (4.21) и (4.31) были проверены на большом числе материалов и при различных условиях нагружения. Испытания были проведены при растяжении-сжатии с частотой около одного цикла в минуту и одного цикла за 10 мин в широком интервале температур. Для измерений деформаций использовались как продольные, так и поперечные деформометры. При этом были испытаны сплошные (цилиндрические и корсетные) и трубчатые образцы из котельной стали 22к (при температурах 20-450 С и асимметриях - 1, -0,9 -0,7 и -0,3, кроме того, образцы сварные и с надрезом), теплоустойчивой стали ТС (при температурах 20-550° С и асимметриях -1 -0,9 -0,7 и -0,3), жаропрочного никелевого сплава ЭИ-437Б (при 700° С), стали 16ГНМА, ЧСН, Х18Н10Т, сталь 45, алюминиевого сплава АД-33 (при асимметриях -1 0 -Ь0,5) и др. Все материалы испытывались в состоянии поставки.
Коэффициент пропорциональности Е, связывающ.и нормальное напряжение и продольную деформацию, на зывается модулем упругости при растяжении-сжатий материала. Этот коэффициент имеет и другие названия модуль упругости 1-го рода, модуль Юнга. Модуль упругости Е является одной из важнейших физических постоянных, характеризующих способность материала сопротивляться упругому деформированию. Чем больше эта величина, тем менее растягивается или сжимается брус при приложении одной и той же силы Р.
Если считать, что на рис. 2-20, а вал О является ведущим, а валы О1 и О2 ведомыми, то при отключении разъединителя тяги ЛЛ1 и Л1Л2 будут работать на сжатие, а при включении - на растяжение. Пока расстояния между осями валов О, 0 и О2 невелики (до 2000 мм), разница между деформацией тяги при растяжении и при сжатии (продольный изгиб) не сказывается на работе синхронной передачи. В разъединителе на 150 кВ расстояние между полюсами 2800 мм, на 330 кВ- 3500 мм, на 750 кВ- 10 000 мм. При таких больших расстояниях между центрами валов и значительных нагрузках, которые они должны передавать, мол / > d. Такая длина выбирается из сообралсений большей устойчивости, так как длинный образец помимо сжатия может испытывать деформацию продольного изгиба, о котором пойдет речь во второй части курса. Образцы из строительных материалов изготовляются в форме куба с размерами 100 X ЮО X ЮО или 150 X X 150 X 150 мм. При испытании на сжатие цилиндрический образец принимает первоначально бочкообразную форму. Если он изготовлен из пластичного материала, то дальнейшее нагружение приводит к расплющиванию образца, если материал хрупкий, то образец внезапно растрескивается.
В любых точках рассматриваемого бруса имеется одинаковое напряженное состояние и, следовательно, линейные деформации (см. 1.5) для всех его тo eк одинаковы. Поэтому значение можно определить как отношение абсолютного удлинения А/ к первоначальной длине бруса /, т. е. е, = А///. Линейную деформацию при растяжении или сжатии брустев называют обычно относительным удлинением (и ли относительной продольной деформацией) и обозначают е.
Смотреть страницы где упоминается термин Деформация продольная при растяжении (сжатии) : Технический справочник железнодорожника Том 2 (1951) — [ c.11 ]
Продольные и поперечные деформации при растяжении - сжатии. Закон Гука
При приложении к стержню растягивающих нагрузок его первоначальная длина / увеличивается (рис. 2.8). Обозначим приращение длины через А/. Отношение приращения длины стержня к его первоначальной длине называется относительным удлинением или продольной деформацией и обозначается через г:
Относительное удлинение - величина безразмерная, в некоторых случаях ее принято выражать в процентах:
При растяжении изменяются размеры стержня не только в продольном направлении, но и в поперечном - происходит сужение стержня.
Рис. 2.8. Деформация стержня при растяжении
Отношение изменения А а размера поперечного сечения к его первоначальному размеру называется относительным поперечным сужением или поперечной деформацией’.
Опытным путем установлено, что между продольной и поперечной деформациями существует зависимость
где р называется коэффициентом Пуассона и являются постоянной величиной для данного материала.
Коэффициент Пуассона представляет собой, как это видно из приведенной формулы, отношение поперечной деформации к продольной:
Для различных материалов значения коэффициента Пуассона лежат в пределах от 0 до 0,5.
В среднем для металлов и сплавов коэффициент Пуассона приблизительно равен 0,3 (табл. 2.1).
Значение коэффициента Пуассона
При сжатии происходит обратная картина, т.е. в поперечном направлении первоначальные размеры уменьшаются, а в поперечном - увеличиваются.
Многочисленные опыты показывают, что до определенных пределов нагружения для большинства материалов напряжения, возникающие при растяжении или сжатии стержня, находятся в определенной зависимости от продольной деформации. Эта зависимость носит название закона Гука , который может быть сформулирован следующим образом.
В известных пределах нагружения между продольной деформацией и соответствующим нормальным напряжением существует прямо пропорциональная зависимость
Коэффициент пропорциональности Е называется модулем продольной упругости. Он имеет ту же размерность, что и напряжение, т.е. измеряется в Па, МПа.
Модуль продольной упругости - физическая постоянная данного материала, характеризующая способность материала сопротивляться упругим деформациям. Для данного материала величина модуля упругости колеблется в узких пределах. Так, для стали разных марок Е= (1,9. 2,15) 10 5 МПа.
Для наиболее часто применяемых материалов модуль упругости имеет следующие значения в МПа (табл. 2.2).
Значение модуля упругости для наиболее часто применяемых материалов
- Нравственное и патриотическое воспитание может стать элементом образовательного процесса Разработаны меры по обеспечению патриотического и нравственного воспитания детей и молодежи. Соответствующий законопроект 1 внесен в Госдуму членом Совета Федерации Сергеем […]
- Как оформить иждивение? Вопросы необходимости оформления иждивения возникают не часто, поскольку большая часть иждивенцев являются таковыми в силу закона, и проблема установления факта иждивения отпадает сама по себе. Вместе с тем, в ряде случаев необходимость оформления […]
- Срочное оформление и получение загранпаспорта Никто не застрахован от ситуации, когда резко возникает необходимость быстро оформить загранпаспорт в Москве или любом другом российском городе. Что делать? Куда обращаться? И во сколько обойдётся подобная услуга? Необходимо […]
- Налоги в Швеции и перспективы развития бизнеса Прежде чем отправиться в Швецию в качестве бизнес-эмигранта, нелишним будет узнать больше о налоговой системе страны. Налоги в Швеции – это сложная, и, как сказали бы наши соотечественники, мудрёная система. Некоторых она […]
- Налог на выигрыш: размер в 2017 году За предыдущие годы можно четко проследить тенденцию, которой придерживаются государственные органы власти. Принимаются все более жесткие меры по контролю доходов игрового бизнеса, а также населения, получающего выигрыши. Так, в 2014 […]
- Уточнение исковых требований После принятия судом иска и даже в процессу судебного разбирательства истец имеет право заявить уточнение исковых требований. В порядке уточнений можно указать новые обстоятельства или дополнить старые, увеличить или уменьшить сумму иска, […]
- Как правильно удалять программы с компьютера? Казалось бы, что сложного в удалении программ с компьютера? Но я знаю, что множество начинающих пользователей испытывают с этим проблемы. Вот, например, выдержка из одного письма, которое я получил: «…У меня к Вам такой вопрос: […]
- ЧТО ВАЖНО ЗНАТЬ О НОВОМ ЗАКОНОПРОЕКТЕ О ПЕНСИЯХ С 01.01.2002 трудовые пенсии назначаются и выплачиваются в соответствии с Федеральным законом «О трудовых пенсиях в Российской Федерации» от 17.12.2001 № 173-ФЗ. При установлении размера трудовой пенсии согласно названному […]
Рассмотрим прямой брус постоянного сечения длиной заделанный одним концом и нагруженный на другом конце растягивающей силой Р (рис. 8.2, а). Под действием силы Р брус удлиняется на некоторую величину которая называется полным, или абсолютным, удлинением (абсолютной продольной деформацией).
В любых точках рассматриваемого бруса имеется одинаковое напряженное состояние и, следовательно, линейные деформации (см. § 5.1) для всех его точек одинаковы. Поэтому значение можно определить как отношение абсолютного удлинения к первоначальной длине бруса I, т. е. . Линейную деформацию при растяжении или сжатии брусьев называют обычно относительным удлинением, или относительной продольной деформацией, и обозначают .
Следовательно,
Относительная продольная деформация измеряется в отвлеченных единицах. Деформацию удлинения условимся считать положительной (рис. 8.2, а), а деформацию сжатия - отрицательной (рис. 8.2, б).
Чем больше величина силы, растягивающей брус, тем больше, при прочих равных условиях, удлинение бруса; чем больше площадь поперечного сечения бруса, тем удлинение бруса меньше. Брусья из различных материалов удлиняются различно. Для случаев, когда напряжения в брусе не превышают предела пропорциональности (см. § 6.1, п. 4), опытом установлена следующая зависимость:
Здесь N - продольная сила в поперечных сечениях бруса; - площадь поперечного сечения бруса; Е - коэффициент, зависящий от физических свойств материала.
Учитывая, что нормальное напряжение в поперечном сечении бруса получаем
Абсолютное удлинение бруса выражается формулой
т. е. абсолютная продольная деформация прямо пропорциональна продольной силе.
Впервые закон о прямой пропорциональности между силами и деформациями сформулировал (в 1660 г.). Формулы (10.2)-(13.2) являются математическими выражениями закона Гука при растяжении и сжатии бруса.
Более общей является следующая формулировка закона Гука [см. формулы (11.2) и (12.2)]: относительная продольная деформация прямо пропорциональна нормальному напряжению. В такой формулировке закон Гука используется не только при изучении растяжения и сжатия брусьев, но и в других разделах курса.
Величина Е, входящая в формулы (10.2)-(13.2), называется модулем упругости первого рода (сокращенно-модулем упругости) Эта величина - физическая постоянная материала, характеризующая его жесткость. Чем больше значение Е, тем меньше, при прочих равных условиях, продольная деформация.
Произведение назовем жесткостью поперечного сечения бруса при растяжении и сжатии.
В приложении I приведены значения модулей упругости Е для различных материалов.
Формулой (13.2) можно пользоваться для вычисления абсолютной продольной деформации участка бруса длиной лишь при условии, что сечение бруса в пределах этого участка постоянно и продольная сила N во всех поперечных сечениях одинакова.
Кроме продольной деформации, при действии на брус сжимающей или растягивающей силы наблюдается также поперечная деформация. При сжатии бруса поперечные размеры его увеличиваются, а при растяжении - уменьшаются. Если поперечный размер бруса до приложения к нему сжимаюших сил Р обозначить b, а после приложения этих сил (рис. 9.2), то величина будет обозначать абсолютную поперечную деформацию бруса.
Отношение является относительной поперечной деформацией.
Опыт показывает, что при напряжениях, не превышающих предела упругости (см. § 6.1, п. 3), относительная поперечная деформация прямо пропорциональна относительной продольной деформации , но имеет обратный знак:
Коэффициент пропорциональности в формуле (14.2) зависит от материала бруса. Он называется коэффициентом поперечной деформации, или коэффициентом Пуассона, и представляет собой отношение относительной поперечной деформации к продольной, взятое по абсолютной величине, т. е.
Коэффициент Пуассона наряду с модулем упругости Е характеризует упругие свойства материала.
Величина коэффициента Пуассона определяется экспериментально. Для различных материалов она имеет значения от нуля (для пробки) до величины, близкой к 0,50 (для резины и парафина). Для стали коэффициент Пуассона равен 0,25-0,30; для ряда других металлов (чугуна, цинка, бронзы, меди) он имеет значения от 0,23 до 0,36. Ориентировочные значения коэффициента Пуассона для различных материалов приведены в приложении I.
Рассмотрим прямой брус постоянного сечения длиной l, заделанный одним концом и нагруженный на другом конце растягивающей силой Р (рис. 2.9, а). Под действием силы Р брус удлиняется на некоторую величину?l, которая называется полным, или абсолютным, удлинением (абсолютной продольной деформацией).
В любых точках рассматриваемого бруса имеется одинаковое напряженное состояние, и, следовательно, линейные деформации для всех его точек одинаковы. Поэтому значение можно определить как отношение абсолютного удлинения?l к первоначальной длине бруса l, т.е. . Линейную деформацию при растяжении или сжатии брусьев называют обычно относительным удлинением, или относительной продольной деформацией, и обозначают
Следовательно,
Относительная продольная деформация измеряется в отвлеченных единицах. Деформацию удлинения условимся считать положительной (рис. 2.9, а), а деформацию сжатия - отрицательной (рис. 2.9, б).
Чем больше величина силы, растягивающей брус, тем больше, при прочих равных условиях, удлинение бруса; чем больше площадь поперечного сечения бруса, тем удлинение бруса меньше. Брусья из различных материалов удлиняются различно. Для случаев, когда напряжения в брусе не превышают предела пропорциональности, опытом установлена следующая зависимость:
Здесь N - продольная сила в поперечных сечениях бруса;
F - площадь поперечного сечения бруса;
Е - коэффициент, зависящий от физических свойств материала.
Учитывая, что нормальное напряжение в поперечном сечении бруса получаем
Абсолютное удлинение бруса выражается формулой
т.е. абсолютная продольная деформация прямо пропорциональна продольной силе.
Впервые закон о прямой пропорциональности между силами и деформациями сформулировал Р. Гук (в 1660 г.).
Более общей является следующая формулировка закона Гука относительная продольная деформация прямо пропорциональна нормальному напряжению. В такой формулировке закон Гука используется не только при изучении растяжения и сжатия брусьев, но и в других разделах курса.
Величина Е, входящая в формулы, называется модулем продольной упругости (сокращенно - модулем упругости). Эта величина - физическая постоянная материала, характеризующая его жесткость. Чем больше значение Е, тем меньше, при прочих равных условиях, продольная деформации.
Произведение EF называется жесткостью поперечного сечения бруса при растяжении и сжатии.
Если поперечный размер бруса до приложения к нему сжимающих сил Р обозначить b, а после приложения этих сил b+?b (рис. 9.2), то величина?b будет обозначать абсолютную поперечную деформацию бруса. Отношение является относительной поперечной деформацией.
Опыт показывает, что при напряжениях, не превышающих предела упругости, относительная поперечная деформацией прямо пропорциональна относительной продольной деформации е, но имеет обратный знак:
Коэффициент пропорциональности в формуле (2.16) зависит от материала бруса. Он называется коэффициентом поперечной деформации, или коэффициентом Пуассона, и представляет собой отношение поперечной деформации к продольной, взятое по абсолютной величине, т.е.
Коэффициент Пуассона, наряду с модулем упругости Е, характеризует упругие свойства материала.
Величина коэффициента Пуассона определяется экспериментально. Для различных материалов она имеет значения от нуля (для пробки) до величины, близкой к 0,50 (для резины и парафина). Для стали коэффициент Пуассона равен 0,25-0,30; для ряда других метало (чугуна, цинка, бронзы, меди) он имеет значения от 0,23 до 0,36.
Таблица 2.1 Значения модуля упругости.
Таблица 2.2 Значения коэффициента поперечной деформации (коэффициент Пуассона)